NOTE TO READER

This page contains an output log for analysis. Please contact Sam Rowe () if you have questions. Analysis was conducted using R and STATA.






Evaluate Data

Show first 10 rows of baseline

library(broom)
library(dplyr)
load(file="SDCTQTR.Rdata")
load(file="Baseline.Rdata")
head(Baseline, n=10) %>% kable()
FARMID CowID QTR Tx Spectramast Age Parity IMIDO DOSCC DOMY DODIM PrevCM PrevSCCHI DPlength PCSampDIM
6 6 LF 2 y 36.08553 1 0 3.988984 32.65862 316 0 5.924256 55 6
6 6 LR 2 y 36.08553 1 0 3.988984 32.65862 316 0 5.924256 55 6
6 6 RF 2 y 36.08553 1 1 3.988984 32.65862 316 0 5.924256 55 6
6 6 RR 2 y 36.08553 1 0 3.988984 32.65862 316 0 5.924256 55 6
1 7 LF 2 y 61.05263 3 1 6.198479 34.01940 322 0 7.100852 46 1
1 7 LR 2 y 61.05263 3 0 6.198479 34.01940 322 0 7.100852 46 1
1 7 RF 2 y 61.05263 3 1 6.198479 34.01940 322 0 7.100852 46 1
1 7 RR 2 y 61.05263 3 0 6.198479 34.01940 322 0 7.100852 46 1
2 7 LF 0 y 57.82895 3 0 4.025352 30.84426 390 1 7.697575 49 2
2 7 LR 0 y 57.82895 3 1 4.025352 30.84426 390 1 7.697575 49 2



Inspect Data

#summarytools::dfSummary(Baseline, style='grid')

print(summarytools::dfSummary(Baseline, valid.col=FALSE,graph.magnif=0.5,varnumbers=F,style="grid"))
## Data Frame Summary  
##   
## Dimensions: 4704 x 15  
## Duplicates: 0  
## 
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | Variable     | Stats / Values             | Freqs (% of Valid)   | Graph                      | Missing |
## +==============+============================+======================+============================+=========+
## | FARMID       | Mean (sd) : 4 (1.5)        | 1 :  296 ( 6.3%)     | I                          | 0       |
## | [numeric]    | min < med < max:           | 2 :  324 ( 6.9%)     | I                          | (0%)    |
## |              | 1 < 4 < 7                  | 3 : 1044 (22.2%)     | IIII                       |         |
## |              | IQR (CV) : 2 (0.4)         | 4 : 1452 (30.9%)     | IIIIII                     |         |
## |              |                            | 5 :  948 (20.2%)     | IIII                       |         |
## |              |                            | 6 :  188 ( 4.0%)     |                            |         |
## |              |                            | 7 :  452 ( 9.6%)     | I                          |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | CowID        | Mean (sd) : 4575.5 (3181)  | 1116 distinct values |     :                      | 0       |
## | [numeric]    | min < med < max:           |                      | : : :                      | (0%)    |
## |              | 6 < 4298 < 23096           |                      | : : :                      |         |
## |              | IQR (CV) : 4152.5 (0.7)    |                      | : : :                      |         |
## |              |                            |                      | : : : :   . .              |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | QTR          | 1. LF                      | 1176 (25.0%)         | IIIII                      | 0       |
## | [factor]     | 2. LR                      | 1176 (25.0%)         | IIIII                      | (0%)    |
## |              | 3. RF                      | 1176 (25.0%)         | IIIII                      |         |
## |              | 4. RR                      | 1176 (25.0%)         | IIIII                      |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | Tx           | 1. 0                       | 1568 (33.3%)         | IIIIII                     | 0       |
## | [factor]     | 2. 1                       | 1592 (33.8%)         | IIIIII                     | (0%)    |
## |              | 3. 2                       | 1544 (32.8%)         | IIIIII                     |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | Spectramast  | 1. n                       | 1740 (37.0%)         | IIIIIII                    | 0       |
## | [character]  | 2. y                       | 2964 (63.0%)         | IIIIIIIIIIII               | (0%)    |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | Age          | Mean (sd) : 46.7 (15.2)    | 663 distinct values  | :                          | 0       |
## | [numeric]    | min < med < max:           |                      | :                          | (0%)    |
## |              | 30.4 < 44.4 < 122.3        |                      | : :                        |         |
## |              | IQR (CV) : 22.4 (0.3)      |                      | : : .                      |         |
## |              |                            |                      | : : : : : .                |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | Parity       | 1. 1                       | 2008 (42.7%)         | IIIIIIII                   | 0       |
## | [factor]     | 2. 2                       | 1420 (30.2%)         | IIIIII                     | (0%)    |
## |              | 3. 3                       | 1276 (27.1%)         | IIIII                      |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | IMIDO        | Min  : 0                   | 0 : 3164 (74.6%)     | IIIIIIIIIIIIII             | 462     |
## | [numeric]    | Mean : 0.3                 | 1 : 1078 (25.4%)     | IIIII                      | (9.82%) |
## |              | Max  : 1                   |                      |                            |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | DOSCC        | Mean (sd) : 4.4 (1.2)      | 395 distinct values  |       :                    | 0       |
## | [numeric]    | min < med < max:           |                      |     . : :                  | (0%)    |
## |              | 1.6 < 4.3 < 8.6            |                      |     : : : .                |         |
## |              | IQR (CV) : 1.6 (0.3)       |                      |   : : : : : .              |         |
## |              |                            |                      | . : : : : : : : .          |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | DOMY         | Mean (sd) : 27.3 (8.7)     | 87 distinct values   |             :              | 0       |
## | [numeric]    | min < med < max:           |                      |           : :              | (0%)    |
## |              | 1.8 < 28.6 < 49.4          |                      |         : : : .            |         |
## |              | IQR (CV) : 10.9 (0.3)      |                      |       . : : : :            |         |
## |              |                            |                      | . : : : : : : : .          |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | DODIM        | Mean (sd) : 324.7 (45.6)   | 179 distinct values  |   :                        | 0       |
## | [numeric]    | min < med < max:           |                      |   :                        | (0%)    |
## |              | 252 < 305.5 < 584          |                      |   :                        |         |
## |              | IQR (CV) : 49 (0.1)        |                      |   : .                      |         |
## |              |                            |                      |   : : : . .                |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | PrevCM       | 1. 0                       | 4056 (86.2%)         | IIIIIIIIIIIIIIIII          | 0       |
## | [factor]     | 2. 1                       |  648 (13.8%)         | II                         | (0%)    |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | PrevSCCHI    | Mean (sd) : 5.4 (1.3)      | 611 distinct values  |     . :                    | 0       |
## | [numeric]    | min < med < max:           |                      |     : : : .                | (0%)    |
## |              | 2.9 < 5.3 < 9.2            |                      |   : : : : :                |         |
## |              | IQR (CV) : 1.8 (0.2)       |                      |   : : : : : : .            |         |
## |              |                            |                      | : : : : : : : : . .        |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | DPlength     | Mean (sd) : 55.8 (7.8)     | 54 distinct values   |         :                  | 0       |
## | [numeric]    | min < med < max:           |                      |         :                  | (0%)    |
## |              | 30 < 56 < 87               |                      |         : :                |         |
## |              | IQR (CV) : 8 (0.1)         |                      |       : : :                |         |
## |              |                            |                      |   . : : : : : .            |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+
## | PCSampDIM    | Mean (sd) : 5.8 (2.8)      | 14 distinct values   |       :                    | 280     |
## | [numeric]    | min < med < max:           |                      |       :     :              | (5.95%) |
## |              | 0 < 6 < 13                 |                      |     . : . . :              |         |
## |              | IQR (CV) : 4 (0.5)         |                      | .   : : : : :              |         |
## |              |                            |                      | : : : : : : : : . .        |         |
## +--------------+----------------------------+----------------------+----------------------------+---------+



Compare treatment groups at baseline

table1::table1(~ factor(FARMID) + Spectramast + Age + Parity + factor(IMIDO) + DOSCC + DOMY + DODIM + PrevCM + PrevSCCHI + DPlength + PCSampDIM | Tx, data=SDCTQTR,topclass="Rtable1-grid")
0
(n=1568)
1
(n=1592)
2
(n=1544)
Overall
(n=4704)
factor(FARMID)
1 112 (7.1%) 100 (6.3%) 84 (5.4%) 296 (6.3%)
2 108 (6.9%) 92 (5.8%) 124 (8.0%) 324 (6.9%)
3 368 (23.5%) 348 (21.9%) 328 (21.2%) 1044 (22.2%)
4 444 (28.3%) 512 (32.2%) 496 (32.1%) 1452 (30.9%)
5 312 (19.9%) 332 (20.9%) 304 (19.7%) 948 (20.2%)
6 64 (4.1%) 64 (4.0%) 60 (3.9%) 188 (4.0%)
7 160 (10.2%) 144 (9.0%) 148 (9.6%) 452 (9.6%)
Spectramast
y 1568 (100%) 708 (44.5%) 688 (44.6%) 2964 (63.0%)
n 0 (0%) 884 (55.5%) 856 (55.4%) 1740 (37.0%)
Age
Mean (SD) 47.2 (14.6) 46.9 (15.9) 46.1 (15.0) 46.7 (15.2)
Median [Min, Max] 44.7 [30.8, 104] 44.1 [30.4, 111] 44.5 [30.4, 122] 44.4 [30.4, 122]
Parity
1 616 (39.3%) 732 (46.0%) 660 (42.7%) 2008 (42.7%)
2 516 (32.9%) 416 (26.1%) 488 (31.6%) 1420 (30.2%)
3 436 (27.8%) 444 (27.9%) 396 (25.6%) 1276 (27.1%)
factor(IMIDO)
0 1046 (66.7%) 1069 (67.1%) 1049 (67.9%) 3164 (67.3%)
1 350 (22.3%) 373 (23.4%) 355 (23.0%) 1078 (22.9%)
Missing 172 (11.0%) 150 (9.4%) 140 (9.1%) 462 (9.8%)
DOSCC
Mean (SD) 4.45 (1.21) 4.38 (1.23) 4.45 (1.22) 4.43 (1.22)
Median [Min, Max] 4.33 [1.61, 8.35] 4.23 [1.61, 8.59] 4.39 [1.61, 8.25] 4.32 [1.61, 8.59]
DOMY
Mean (SD) 26.7 (8.87) 27.9 (8.81) 27.3 (8.38) 27.3 (8.70)
Median [Min, Max] 27.7 [4.54, 49.4] 29.0 [1.81, 49.4] 29.0 [2.72, 49.4] 28.6 [1.81, 49.4]
DODIM
Mean (SD) 323 (45.6) 328 (46.7) 323 (44.5) 325 (45.6)
Median [Min, Max] 304 [252, 584] 310 [258, 508] 304 [258, 512] 306 [252, 584]
PrevCM
0 1344 (85.7%) 1360 (85.4%) 1352 (87.6%) 4056 (86.2%)
1 224 (14.3%) 232 (14.6%) 192 (12.4%) 648 (13.8%)
PrevSCCHI
Mean (SD) 5.37 (1.30) 5.49 (1.23) 5.40 (1.29) 5.42 (1.28)
Median [Min, Max] 5.23 [2.87, 9.21] 5.37 [3.14, 9.21] 5.30 [2.94, 9.21] 5.30 [2.87, 9.21]
DPlength
Mean (SD) 55.4 (7.83) 56.1 (7.37) 56.0 (8.19) 55.8 (7.80)
Median [Min, Max] 56.0 [33.0, 84.0] 56.0 [33.0, 84.0] 56.0 [30.0, 87.0] 56.0 [30.0, 87.0]
PCSampDIM
Mean (SD) 5.81 (2.80) 5.75 (2.77) 5.75 (2.80) 5.77 (2.79)
Median [Min, Max] 6.00 [0.00, 13.0] 6.00 [0.00, 13.0] 6.00 [0.00, 13.0] 6.00 [0.00, 13.0]
Missing 84 (5.4%) 84 (5.3%) 112 (7.3%) 280 (6.0%)




Compare herds

table1::table1(~ Age + Parity  + DOSCC + DOMY + DODIM + PrevCM + PrevSCCHI + DPlength + PCSampDIM + factor(IMIDO) + factor(IMIPC) + factor(Cure) + factor(NewIMI) | factor(FARMID), data=SDCTQTR,topclass="Rtable1-grid")
1
(n=296)
2
(n=324)
3
(n=1044)
4
(n=1452)
5
(n=948)
6
(n=188)
7
(n=452)
Overall
(n=4704)
Age
Mean (SD) 48.4 (16.0) 46.8 (14.3) 46.8 (13.4) 46.7 (16.1) 46.9 (15.9) 42.9 (11.1) 46.6 (16.1) 46.7 (15.2)
Median [Min, Max] 44.4 [30.6, 90.2] 44.5 [30.7, 95.7] 44.8 [30.4, 95.5] 44.2 [31.7, 122] 44.5 [30.4, 115] 43.7 [31.0, 82.6] 44.6 [31.0, 114] 44.4 [30.4, 122]
Parity
1 124 (41.9%) 132 (40.7%) 364 (34.9%) 700 (48.2%) 408 (43.0%) 92 (48.9%) 188 (41.6%) 2008 (42.7%)
2 60 (20.3%) 108 (33.3%) 380 (36.4%) 376 (25.9%) 288 (30.4%) 68 (36.2%) 140 (31.0%) 1420 (30.2%)
3 112 (37.8%) 84 (25.9%) 300 (28.7%) 376 (25.9%) 252 (26.6%) 28 (14.9%) 124 (27.4%) 1276 (27.1%)
DOSCC
Mean (SD) 4.50 (1.00) 4.07 (1.14) 4.00 (0.909) 4.48 (1.17) 5.17 (1.39) 4.34 (0.958) 3.91 (1.08) 4.43 (1.22)
Median [Min, Max] 4.54 [2.56, 7.59] 3.95 [2.30, 8.17] 3.98 [2.60, 6.68] 4.47 [1.61, 8.59] 5.13 [1.61, 8.35] 4.47 [2.56, 6.61] 3.78 [2.56, 7.38] 4.32 [1.61, 8.59]
DOMY
Mean (SD) 22.9 (6.26) 26.7 (9.65) 29.5 (6.87) 30.3 (7.72) 19.6 (8.57) 30.7 (4.77) 30.6 (6.31) 27.3 (8.70)
Median [Min, Max] 22.7 [9.07, 38.1] 28.6 [2.72, 44.0] 30.4 [8.62, 47.6] 30.4 [2.72, 49.4] 20.0 [1.81, 39.9] 30.8 [16.8, 40.8] 30.8 [15.4, 48.5] 28.6 [1.81, 49.4]
DODIM
Mean (SD) 347 (51.7) 334 (52.7) 313 (37.6) 325 (44.3) 329 (50.6) 328 (43.0) 321 (39.0) 325 (45.6)
Median [Min, Max] 326 [292, 584] 304 [293, 512] 293 [266, 475] 296 [283, 468] 308 [252, 512] 314 [258, 444] 307 [272, 476] 306 [252, 584]
PrevCM
0 244 (82.4%) 320 (98.8%) 904 (86.6%) 1252 (86.2%) 748 (78.9%) 184 (97.9%) 404 (89.4%) 4056 (86.2%)
1 52 (17.6%) 4 (1.2%) 140 (13.4%) 200 (13.8%) 200 (21.1%) 4 (2.1%) 48 (10.6%) 648 (13.8%)
PrevSCCHI
Mean (SD) 5.46 (1.31) 5.06 (1.31) 4.77 (1.08) 5.76 (1.20) 6.13 (1.11) 5.02 (0.920) 4.73 (1.16) 5.42 (1.28)
Median [Min, Max] 5.31 [3.43, 9.21] 4.78 [3.33, 9.21] 4.61 [2.87, 8.21] 5.65 [3.00, 9.21] 6.06 [3.40, 9.21] 5.09 [3.09, 7.06] 4.53 [2.94, 8.00] 5.30 [2.87, 9.21]
DPlength
Mean (SD) 53.1 (11.7) 52.6 (5.62) 57.9 (6.38) 56.1 (6.00) 55.6 (8.19) 60.3 (7.14) 53.0 (10.6) 55.8 (7.80)
Median [Min, Max] 52.0 [32.0, 85.0] 53.0 [30.0, 63.0] 58.0 [35.0, 87.0] 56.0 [35.0, 74.0] 55.0 [35.0, 85.0] 60.0 [47.0, 84.0] 55.0 [33.0, 77.0] 56.0 [30.0, 87.0]
PCSampDIM
Mean (SD) 2.70 (1.84) 2.48 (1.70) 7.61 (2.67) 6.31 (2.09) 6.20 (2.14) 4.02 (2.61) 4.41 (2.79) 5.77 (2.79)
Median [Min, Max] 2.00 [0.00, 7.00] 2.00 [0.00, 7.00] 8.00 [1.00, 13.0] 6.00 [3.00, 13.0] 6.00 [3.00, 13.0] 4.00 [0.00, 10.0] 5.00 [0.00, 13.0] 6.00 [0.00, 13.0]
Missing 12 (4.1%) 0 (0%) 112 (10.7%) 84 (5.8%) 40 (4.2%) 12 (6.4%) 20 (4.4%) 280 (6.0%)
factor(IMIDO)
0 263 (88.9%) 294 (90.7%) 436 (41.8%) 927 (63.8%) 789 (83.2%) 126 (67.0%) 329 (72.8%) 3164 (67.3%)
1 29 (9.8%) 29 (9.0%) 255 (24.4%) 492 (33.9%) 136 (14.3%) 47 (25.0%) 90 (19.9%) 1078 (22.9%)
Missing 4 (1.4%) 1 (0.3%) 353 (33.8%) 33 (2.3%) 23 (2.4%) 15 (8.0%) 33 (7.3%) 462 (9.8%)
factor(IMIPC)
0 277 (93.6%) 308 (95.1%) 638 (61.1%) 839 (57.8%) 656 (69.2%) 147 (78.2%) 347 (76.8%) 3212 (68.3%)
1 18 (6.1%) 16 (4.9%) 197 (18.9%) 431 (29.7%) 231 (24.4%) 21 (11.2%) 47 (10.4%) 961 (20.4%)
Missing 1 (0.3%) 0 (0%) 209 (20.0%) 182 (12.5%) 61 (6.4%) 20 (10.6%) 58 (12.8%) 531 (11.3%)
factor(Cure)
0 1 (0.3%) 3 (0.9%) 21 (2.0%) 73 (5.0%) 14 (1.5%) 2 (1.1%) 3 (0.7%) 117 (2.5%)
1 28 (9.5%) 26 (8.0%) 176 (16.9%) 359 (24.7%) 114 (12.0%) 44 (23.4%) 71 (15.7%) 818 (17.4%)
Missing 267 (90.2%) 295 (91.0%) 847 (81.1%) 1020 (70.2%) 820 (86.5%) 142 (75.5%) 378 (83.6%) 3769 (80.1%)
factor(NewIMI)
0 274 (92.6%) 310 (95.7%) 444 (42.5%) 882 (60.7%) 654 (69.0%) 141 (75.0%) 325 (71.9%) 3030 (64.4%)
1 17 (5.7%) 13 (4.0%) 107 (10.2%) 360 (24.8%) 213 (22.5%) 15 (8.0%) 39 (8.6%) 764 (16.2%)
Missing 5 (1.7%) 1 (0.3%) 493 (47.2%) 210 (14.5%) 81 (8.5%) 32 (17.0%) 88 (19.5%) 910 (19.3%)



Steps 1-2 of model building were conducted in R




Outcome 1: Cure

library(gmodels)
CrossTable(SDCTQTR$Tx,SDCTQTR$Cure,prop.c=FALSE,prop.t=FALSE,prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  935 
## 
##  
##              | SDCTQTR$Cure 
##   SDCTQTR$Tx |         0 |         1 | Row Total | 
## -------------|-----------|-----------|-----------|
##            0 |        40 |       263 |       303 | 
##              |     0.132 |     0.868 |     0.324 | 
## -------------|-----------|-----------|-----------|
##            1 |        41 |       288 |       329 | 
##              |     0.125 |     0.875 |     0.352 | 
## -------------|-----------|-----------|-----------|
##            2 |        36 |       267 |       303 | 
##              |     0.119 |     0.881 |     0.324 | 
## -------------|-----------|-----------|-----------|
## Column Total |       117 |       818 |       935 | 
## -------------|-----------|-----------|-----------|
## 
## 

Logistic regression model for dry period cure

Model building plan

Model type: Logistic regression with mixed effects (generalized linear mixed model with binomial family / logit link).

Step 1: Identify potential confouders using a directed acyclic graph (DAG)

Step 2: Identify correlated variables using pearson and kendalls correlation coefficients

Step 3: Create model with all potential confounders

Step 4: Investigate potential effect measure modification

Step 5: Remove unneccesary covariates in backwards stepwise fashion using 10% rule (i.e. if odds ratio for algorithm or culture changes by >10% after removing the covariate, the covariate is retained in the model)

Step 6: Report final model

Step 1: DAG

This is used to identify variables that could be confounders if they are not balanced between treatment groups.

library(DiagrammeR)
mermaid("graph LR
        T(Treatment)-->U(Cure)
        A(Age)-->T
        P(Parity)-->T
        M(Yield at dry-off)-->T
        S(SCC during prev lactation)-->T
        C(CM in prev lact)-->T
        D(DIM at dry off) --> T
        K(DIM at post calving sample) --> T
        D-->M
        D-->S
        D-->U
        K-->U
        A-->U
        P-->U
        M-->U
        S-->U
        C-->U
        C-->M
        P-->C
        P-->S
        P-->M
        A-->P
        A-->C
        A-->S
        A-->M
        M-->S
        C-->S
style D fill:#FFFFFF, stroke-width:0px
style K fill:#FFFFFF, stroke-width:0px
style A fill:#FFFFFF, stroke-width:0px
        style T fill:#FFFFFF, stroke-width:2px
        style P fill:#FFFFFF, stroke-width:0px
        style M fill:#FFFFFF, stroke-width:0px
        style S fill:#FFFFFF, stroke-width:0px
        style C fill:#FFFFFF, stroke-width:0px
        style I fill:#FFFFFF, stroke-width:0px
        style U fill:#FFFFFF, stroke-width:2px
        ")

According to this DAG, I may need to control for the following variables.

Parity [“Parity”] or Age [“Age”] <- likely to correlated

Yield at most recent test before dry off [“DOMY”]

Somatic cell count at last herd test during previous lactation [“DOSCC” or “PrevSCCHi”] <- likely to be correlated

Clinical mastitis in previous lactation [“PrevCM”]

Days in milk at dry-off [“DODIM”]

Days in milk at post-calving sample [“PCSampDIM”]





Step 2: Identify correlated covariates

Pearson correlation matrix among potential predictors

cor <- Baseline[, c(6,7,9,10,11,13,14,15)]
cor$Parity <- as.numeric(cor$Parity)
#corrplot(cor)
cor <- cor(cor, use = "complete.obs")
round(cor, 2)
##             Age Parity DOSCC  DOMY DODIM PrevSCCHI DPlength PCSampDIM
## Age        1.00   0.90  0.28 -0.12  0.13      0.22    -0.09     -0.01
## Parity     0.90   1.00  0.29 -0.11  0.02      0.20    -0.12     -0.01
## DOSCC      0.28   0.29  1.00 -0.44  0.12      0.63    -0.06      0.03
## DOMY      -0.12  -0.11 -0.44  1.00 -0.22     -0.31    -0.02     -0.01
## DODIM      0.13   0.02  0.12 -0.22  1.00      0.18    -0.04     -0.08
## PrevSCCHI  0.22   0.20  0.63 -0.31  0.18      1.00    -0.06      0.03
## DPlength  -0.09  -0.12 -0.06 -0.02 -0.04     -0.06     1.00      0.12
## PCSampDIM -0.01  -0.01  0.03 -0.01 -0.08      0.03     0.12      1.00
cor <- Baseline[, c(6,7,9,10,11,13,14,15)]
cor$Parity <- as.numeric(cor$Parity)
cor <- cor(cor, use = "complete.obs", method="kendal")
round(cor, 2)
##             Age Parity DOSCC  DOMY DODIM PrevSCCHI DPlength PCSampDIM
## Age        1.00   0.81  0.23 -0.09  0.16      0.17    -0.10      0.00
## Parity     0.81   1.00  0.26 -0.10  0.03      0.16    -0.12     -0.01
## DOSCC      0.23   0.26  1.00 -0.27  0.06      0.48    -0.07      0.02
## DOMY      -0.09  -0.10 -0.27  1.00 -0.12     -0.20     0.03      0.00
## DODIM      0.16   0.03  0.06 -0.12  1.00      0.12    -0.09     -0.10
## PrevSCCHI  0.17   0.16  0.48 -0.20  0.12      1.00    -0.06      0.03
## DPlength  -0.10  -0.12 -0.07  0.03 -0.09     -0.06     1.00      0.08
## PCSampDIM  0.00  -0.01  0.02  0.00 -0.10      0.03     0.08      1.00

Age and Parity highly correlated as expected. Will only offer parity.

Previous lactation peak SCC is moderately correlated with SCC at last herd test (DOSCC). Will only offer DOSCC.





Steps 3 to 6 conducted in STATA (log file below)

----------------------------------------------------------------------------------------------------------------
      name:  <unnamed>
       log:  /Users/SamRowe1/Dropbox/R backup/SDCT - R/SDCT QTR LOG.smcl
  log type:  smcl
 opened on:   2 Jul 2019, 12:21:05

. do "/var/folders/9d/jztlcdt119jcdw9bmltvxmd40000gp/T//SD17867.000000"

. 
. *****************************
. *    SDCT QTR outcomes 
. *        Sam Rowe       
. *   samrowe101@gmail.com
. *           March 2019    
. *****************************
. 
. *Only marginal standardization will be conducted in Stata. All other analyses conducted in R. 
. *Outcome 1: Cure
. 
. *Step 3: Create full model with all potential covariates
. meglm Cure i.Tx Parity DOSCC DOMY i.PrevCM DODIM PCSampDIM || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -350.97942  
Iteration 1:   log likelihood =  -349.4617  
Iteration 2:   log likelihood = -349.46025  
Iteration 3:   log likelihood = -349.46025  

Refining starting values:

Grid node 0:   log likelihood = -347.25869

Fitting full model:

Iteration 0:   log likelihood = -347.25869  (not concave)
Iteration 1:   log likelihood = -344.04076  
Iteration 2:   log likelihood = -343.72424  (backed up)
Iteration 3:   log likelihood = -343.63129  
Iteration 4:   log likelihood = -343.53269  
Iteration 5:   log likelihood =  -343.5297  
Iteration 6:   log likelihood =  -343.5297  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(8)      =       3.56
Log likelihood =  -343.5297                     Prob > chi2       =     0.8945
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0630215   .2953295     0.21   0.831    -.5158137    .6418567
          2  |   .1614251   .3036173     0.53   0.595    -.4336539    .7565042
             |
      Parity |  -.0424908   .1577721    -0.27   0.788    -.3517183    .2667368
       DOSCC |  -.0979108   .1205049    -0.81   0.417    -.3340962    .1382745
        DOMY |  -.0053816   .0163535    -0.33   0.742    -.0374338    .0266707
             |
      PrevCM |
          1  |   .4836847   .3628774     1.33   0.183     -.227542    1.194911
       DODIM |  -.0025398   .0027663    -0.92   0.359    -.0079615     .002882
   PCSampDIM |  -.0267766     .05171    -0.52   0.605    -.1281264    .0745732
       _cons |   4.197029   1.364847     3.08   0.002     1.521978    6.872081
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .1813986    .197816                      .0213991    1.537706
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.197882   .6767427                      .3958479    3.624932
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 11.86               Prob > chi2 = 0.0027

Note: LR test is conservative and provided only for reference.

. 
. *Step 4: Effect measure modification
. *Will test Tx:Farm, Tx:Parity, Tx:PrevCM
. 
. *Step 4a: Tx:Farm
. meglm Cure i.Tx##i.FARMID Parity DOSCC DOMY i.PrevCM DODIM PCSampDIM || CowID:, family(binomial) link(logit)
note: 1.Tx#2.FARMID != 0 predicts success perfectly
      1.Tx#2.FARMID dropped and 10 obs not used

note: 1.Tx#6.FARMID != 0 predicts success perfectly
      1.Tx#6.FARMID dropped and 8 obs not used

note: 2.Tx#1.FARMID != 0 predicts success perfectly
      2.Tx#1.FARMID dropped and 11 obs not used

note: 2.Tx#6.FARMID != 0 predicts success perfectly
      2.Tx#6.FARMID dropped and 18 obs not used

note: 2.Tx#7.FARMID != 0 predicts success perfectly
      2.Tx#7.FARMID dropped and 31 obs not used

note: 3.Tx#1.FARMID != 0 predicts success perfectly
      3.Tx#1.FARMID dropped and 10 obs not used

note: 3.Tx#7.FARMID != 0 predicts success perfectly
      3.Tx#7.FARMID dropped and 22 obs not used

note: 2.Tx#5.FARMID omitted because of collinearity
note: 3.Tx#2.FARMID omitted because of collinearity
note: 3.Tx#5.FARMID omitted because of collinearity
note: 3.Tx#6.FARMID omitted because of collinearity

Fitting fixed-effects model:

Iteration 0:   log likelihood = -332.17091  
Iteration 1:   log likelihood = -330.84226  
Iteration 2:   log likelihood = -330.83988  
Iteration 3:   log likelihood = -330.83988  

Refining starting values:

Grid node 0:   log likelihood = -332.42527

Fitting full model:

Iteration 0:   log likelihood = -332.42527  
Iteration 1:   log likelihood = -329.44315  
Iteration 2:   log likelihood = -328.42039  
Iteration 3:   log likelihood = -328.40664  
Iteration 4:   log likelihood =  -328.4066  
Iteration 5:   log likelihood =  -328.4066  

Mixed-effects GLM                               Number of obs     =        824
Family:                binomial
Link:                     logit
Group variable:           CowID                 Number of groups  =        505

                                                Obs per group:
                                                              min =          1
                                                              avg =        1.6
                                                              max =          5

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(19)     =       9.81
Log likelihood =  -328.4066                     Prob > chi2       =     0.9575
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |  -.6153327   .7954483    -0.77   0.439    -2.174383    .9437174
          2  |  -.2061446   .8456079    -0.24   0.807    -1.863506    1.451216
             |
      FARMID |
          2  |  -.6432378   1.774609    -0.36   0.717    -4.121407    2.834931
          3  |   .0057473   1.385851     0.00   0.997    -2.710471    2.721966
          4  |  -.7228662   1.307936    -0.55   0.580    -3.286373     1.84064
          5  |   .2679399   1.398644     0.19   0.848    -2.473352    3.009231
          6  |    .131918   1.744342     0.08   0.940     -3.28693    3.550766
          7  |  -.3606119   1.478568    -0.24   0.807    -3.258552    2.537328
             |
   Tx#FARMID |
        0#2  |          0  (empty)
        0#6  |          0  (empty)
        1#1  |          0  (empty)
        1#2  |   1.377906   1.702017     0.81   0.418    -1.957987    4.713799
        1#3  |   .4657346   1.023289     0.46   0.649    -1.539874    2.471343
        1#4  |   .6913465   .8747548     0.79   0.429    -1.023141    2.405834
        1#5  |          0  (omitted)
        1#6  |          0  (empty)
        1#7  |          0  (empty)
        2#1  |          0  (empty)
        2#2  |          0  (omitted)
        2#3  |   .0701329   1.068705     0.07   0.948     -2.02449    2.164755
        2#4  |    .538821   .9366071     0.58   0.565    -1.296895    2.374537
        2#5  |          0  (omitted)
        2#6  |          0  (omitted)
        2#7  |          0  (empty)
             |
      Parity |  -.0368471    .158912    -0.23   0.817    -.3483088    .2746146
       DOSCC |  -.0826244   .1211786    -0.68   0.495    -.3201301    .1548812
        DOMY |  -.0052291   .0165485    -0.32   0.752    -.0376636    .0272053
             |
      PrevCM |
          1  |   .4903174   .3604001     1.36   0.174    -.2160538    1.196688
       DODIM |  -.0029538   .0027678    -1.07   0.286    -.0083786     .002471
   PCSampDIM |   .0019829   .0541207     0.04   0.971    -.1040917    .1080575
       _cons |   3.975348   1.857073     2.14   0.032     .3355525    7.615143
-------------+----------------------------------------------------------------
CowID        |
   var(_cons)|    .993516   .6029097                      .3024321    3.263787
------------------------------------------------------------------------------
LR test vs. logistic model: chibar2(01) = 4.87        Prob >= chibar2 = 0.0137

. testparm Tx#FARMID

 ( 1)  [Cure]2.Tx#2.FARMID = 0
 ( 2)  [Cure]2.Tx#3.FARMID = 0
 ( 3)  [Cure]2.Tx#4.FARMID = 0
 ( 4)  [Cure]3.Tx#3.FARMID = 0
 ( 5)  [Cure]3.Tx#4.FARMID = 0

           chi2(  5) =    1.51
         Prob > chi2 =    0.9119

. 
. *Step 4b: Tx: Parity
. meglm Cure i.Tx##i.Parity DOSCC DOMY i.PrevCM DODIM PCSampDIM|| FARMID:|| CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -347.41961  
Iteration 1:   log likelihood = -344.43194  
Iteration 2:   log likelihood = -344.41461  
Iteration 3:   log likelihood =  -344.4146  

Refining starting values:

Grid node 0:   log likelihood = -342.46088

Fitting full model:

Iteration 0:   log likelihood = -342.46088  (not concave)
Iteration 1:   log likelihood = -340.47107  (not concave)
Iteration 2:   log likelihood = -339.61852  
Iteration 3:   log likelihood = -339.03458  
Iteration 4:   log likelihood = -338.80358  
Iteration 5:   log likelihood = -338.78959  
Iteration 6:   log likelihood = -338.78946  
Iteration 7:   log likelihood = -338.78946  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(13)     =      11.83
Log likelihood = -338.78946                     Prob > chi2       =     0.5416
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .2315985   .4318339     0.54   0.592    -.6147805    1.077977
          2  |   .9625776   .4951733     1.94   0.052    -.0079444    1.933099
             |
      Parity |
          2  |   -.085348   .4599586    -0.19   0.853    -.9868504    .8161544
          3  |   1.050123   .6226753     1.69   0.092    -.1702981    2.270544
             |
   Tx#Parity |
        1#2  |   .1208669   .6647355     0.18   0.856    -1.181991    1.423725
        1#3  |  -1.028261   .7797511    -1.32   0.187    -2.556545    .5000233
        2#2  |  -.8669613   .6811266    -1.27   0.203    -2.201945    .4680222
        2#3  |  -2.174915   .8420039    -2.58   0.010    -3.825213    -.524618
             |
       DOSCC |  -.0806853   .1193036    -0.68   0.499    -.3145159    .1531454
        DOMY |  -.0064929   .0160087    -0.41   0.685    -.0378695    .0248836
             |
      PrevCM |
          1  |   .4329826   .3546984     1.22   0.222    -.2622136    1.128179
       DODIM |  -.0025959   .0027218    -0.95   0.340    -.0079304    .0027387
   PCSampDIM |   -.029054   .0509525    -0.57   0.569    -.1289191    .0708112
       _cons |   3.886378   1.324212     2.93   0.003      1.29097    6.481786
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|    .195338   .1995793                      .0263696    1.447006
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .9865625    .635185                      .2793123    3.484651
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 11.25               Prob > chi2 = 0.0036

Note: LR test is conservative and provided only for reference.

. testparm Tx#Parity

 ( 1)  [Cure]2.Tx#2.Parity = 0
 ( 2)  [Cure]2.Tx#3.Parity = 0
 ( 3)  [Cure]3.Tx#2.Parity = 0
 ( 4)  [Cure]3.Tx#3.Parity = 0

           chi2(  4) =    7.40
         Prob > chi2 =    0.1161

. 
. *Step 4c: Tx:PrevCM
. meglm Cure i.Tx##i.PrevCM DOSCC DOMY Parity DODIM PCSampDIM || FARMID:|| CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -350.05372  
Iteration 1:   log likelihood = -348.07459  
Iteration 2:   log likelihood = -348.05966  
Iteration 3:   log likelihood = -348.05964  

Refining starting values:

Grid node 0:   log likelihood = -345.90448

Fitting full model:

Iteration 0:   log likelihood = -345.90448  (not concave)
Iteration 1:   log likelihood = -342.64265  
Iteration 2:   log likelihood = -342.34071  
Iteration 3:   log likelihood = -342.17217  
Iteration 4:   log likelihood = -342.11636  
Iteration 5:   log likelihood = -342.11516  
Iteration 6:   log likelihood = -342.11516  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(10)     =       5.81
Log likelihood = -342.11516                     Prob > chi2       =     0.8306
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |  -.0080293   .3219444    -0.02   0.980    -.6390287    .6229702
          2  |   .2728611   .3326607     0.82   0.412    -.3791418     .924864
             |
      PrevCM |
          1  |   .5365124   .5541259     0.97   0.333    -.5495545    1.622579
             |
   Tx#PrevCM |
        1#1  |   .6937262   .9030079     0.77   0.442    -1.076137    2.463589
        2#1  |  -.8972941   .8471407    -1.06   0.290    -2.557659    .7630713
             |
       DOSCC |  -.1194005   .1215808    -0.98   0.326    -.3576945    .1188934
        DOMY |  -.0067386   .0164079    -0.41   0.681    -.0388975    .0254203
      Parity |  -.0394723   .1592814    -0.25   0.804    -.3516581    .2727134
       DODIM |  -.0026349   .0027981    -0.94   0.346    -.0081191    .0028494
   PCSampDIM |  -.0233892   .0521212    -0.45   0.654    -.1255449    .0787664
       _cons |   4.337472    1.37205     3.16   0.002     1.648304     7.02664
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .1782429   .1966366                      .0205103    1.549006
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.236526   .6840638                       .418125    3.656791
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 11.89               Prob > chi2 = 0.0026

Note: LR test is conservative and provided only for reference.

. testparm Tx#PrevCM

 ( 1)  [Cure]2.Tx#2.PrevCM = 0
 ( 2)  [Cure]3.Tx#2.PrevCM = 0

           chi2(  2) =    2.73
         Prob > chi2 =    0.2550

. 
. *Step 5: Removing unnecessary covariates using 10% rule. Will do so in this order:
. 
. *DOMY DODIM PCSampDIM PrevCM DOSCC Parity
. *Step 5a: full model
. meglm Cure i.Tx i.Parity DOSCC DOMY i.PrevCM DODIM PCSampDIM || FARMID: || CowID:, or family(binomial) link(lo
> git)

Fitting fixed-effects model:

Iteration 0:   log likelihood =   -350.437  
Iteration 1:   log likelihood =  -348.7516  
Iteration 2:   log likelihood = -348.75047  
Iteration 3:   log likelihood = -348.75047  

Refining starting values:

Grid node 0:   log likelihood = -346.52437

Fitting full model:

Iteration 0:   log likelihood = -346.52437  (not concave)
Iteration 1:   log likelihood = -344.48269  (not concave)
Iteration 2:   log likelihood = -343.61991  
Iteration 3:   log likelihood = -343.24243  
Iteration 4:   log likelihood = -342.85845  
Iteration 5:   log likelihood = -342.81198  
Iteration 6:   log likelihood = -342.81116  
Iteration 7:   log likelihood = -342.81116  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(9)      =       5.02
Log likelihood = -342.81116                     Prob > chi2       =     0.8326
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.032489   .3042975     0.11   0.914     .5794515    1.839727
          2  |   1.166573   .3512019     0.51   0.609     .6466272    2.104601
             |
      Parity |
          2  |   .7214776   .2044126    -1.15   0.249     .4140533    1.257157
          3  |   .9705136   .3133323    -0.09   0.926     .5154535    1.827316
             |
       DOSCC |   .9140688   .1095001    -0.75   0.453     .7227862    1.155974
        DOMY |    .995246   .0161419    -0.29   0.769     .9641061    1.027392
             |
      PrevCM |
          1  |   1.616928    .580557     1.34   0.181     .7999583    3.268241
       DODIM |   .9974022   .0027395    -0.95   0.344     .9920474    1.002786
   PCSampDIM |   .9718037   .0496944    -0.56   0.576     .8791263    1.074251
       _cons |    67.6825   90.70151     3.15   0.002     4.895295    935.7804
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .1867491   .1969007                      .0236475    1.474793
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.129688   .6638476                      .3570754    3.574019
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 11.88               Prob > chi2 = 0.0026

Note: LR test is conservative and provided only for reference.

. 
. *Step 5b: remove DOMY
. meglm Cure i.Tx i.Parity DOSCC i.PrevCM DODIM PCSampDIM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -350.70242  
Iteration 1:   log likelihood =  -349.1285  
Iteration 2:   log likelihood = -349.12719  
Iteration 3:   log likelihood = -349.12719  

Refining starting values:

Grid node 0:   log likelihood = -346.51542

Fitting full model:

Iteration 0:   log likelihood = -346.51542  (not concave)
Iteration 1:   log likelihood = -344.49734  (not concave)
Iteration 2:   log likelihood = -343.63925  
Iteration 3:   log likelihood = -343.07358  
Iteration 4:   log likelihood = -342.86189  
Iteration 5:   log likelihood = -342.85457  
Iteration 6:   log likelihood = -342.85452  
Iteration 7:   log likelihood = -342.85452  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(8)      =       4.96
Log likelihood = -342.85452                     Prob > chi2       =     0.7614
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.031242   .3033449     0.10   0.917     .5793958    1.835463
          2  |   1.164983   .3499961     0.51   0.611     .6465361    2.099163
             |
      Parity |
          2  |   .7214105   .2040092    -1.15   0.248     .4144474    1.255728
          3  |   .9736742   .3137365    -0.08   0.934     .5177739    1.830995
             |
       DOSCC |    .922068   .1067162    -0.70   0.483     .7349344    1.156851
             |
      PrevCM |
          1  |   1.617348   .5799091     1.34   0.180     .8009407    3.265927
       DODIM |   .9975546   .0026854    -0.91   0.363     .9923052    1.002832
   PCSampDIM |   .9729236   .0495517    -0.54   0.590     .8804941    1.075056
       _cons |    53.9168   58.53637     3.67   0.000     6.420844    452.7476
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .1926407   .1981272                      .0256628     1.44608
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.117709   .6609648                      .3507235    3.561989
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 12.55               Prob > chi2 = 0.0019

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOMY stays out
. 
. *Step 5c: remove DODIM
. meglm Cure i.Tx i.Parity DOSCC i.PrevCM PCSampDIM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -351.14402  
Iteration 1:   log likelihood = -349.68869  
Iteration 2:   log likelihood = -349.68729  
Iteration 3:   log likelihood = -349.68729  

Refining starting values:

Grid node 0:   log likelihood = -346.90934

Fitting full model:

Iteration 0:   log likelihood = -346.90934  (not concave)
Iteration 1:   log likelihood = -344.88803  (not concave)
Iteration 2:   log likelihood = -344.04224  
Iteration 3:   log likelihood = -343.73234  
Iteration 4:   log likelihood = -343.31664  
Iteration 5:   log likelihood = -343.26138  
Iteration 6:   log likelihood = -343.26029  
Iteration 7:   log likelihood = -343.26029  

Mixed-effects GLM                               Number of obs     =        934
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.4        432
          CowID |        598          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(7)      =       4.13
Log likelihood = -343.26029                     Prob > chi2       =     0.7651
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.006052   .2956315     0.02   0.984     .5655774    1.789569
          2  |   1.153325   .3473712     0.47   0.636     .6391123    2.081258
             |
      Parity |
          2  |    .728767   .2065633    -1.12   0.264     .4181405     1.27015
          3  |   .9826146   .3174885    -0.05   0.957     .5216209    1.851021
             |
       DOSCC |   .9096542   .1047471    -0.82   0.411      .725872    1.139968
             |
      PrevCM |
          1  |   1.600664   .5753971     1.31   0.191     .7912532    3.238061
   PCSampDIM |   .9716917   .0495228    -0.56   0.573     .8793192    1.073768
       _cons |   26.46978   19.30999     4.49   0.000     6.335623    110.5888
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .1919828   .1967903                      .0257481    1.431459
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.147467    .666526                      .3675407     3.58241
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 12.85               Prob > chi2 = 0.0016

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DODIM stays out
. 
. *Step 5d: remove PCSampDIM
. meglm Cure i.Tx i.Parity DOSCC i.PrevCM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood =   -351.521  
Iteration 1:   log likelihood = -350.13479  
Iteration 2:   log likelihood = -350.13313  
Iteration 3:   log likelihood = -350.13313  

Refining starting values:

Grid node 0:   log likelihood = -347.11941

Fitting full model:

Iteration 0:   log likelihood = -347.11941  (not concave)
Iteration 1:   log likelihood = -345.14656  (not concave)
Iteration 2:   log likelihood = -344.29259  
Iteration 3:   log likelihood = -343.89051  
Iteration 4:   log likelihood = -343.54933  
Iteration 5:   log likelihood = -343.51863  
Iteration 6:   log likelihood = -343.51817  
Iteration 7:   log likelihood = -343.51816  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(6)      =       3.85
Log likelihood = -343.51816                     Prob > chi2       =     0.6963
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |     1.0172   .2969191     0.06   0.953       .57404    1.802482
          2  |   1.159567   .3481599     0.49   0.622     .6437577    2.088666
             |
      Parity |
          2  |   .7331329   .2070609    -1.10   0.272     .4214784    1.275235
          3  |   .9872955   .3183056    -0.04   0.968     .5248298    1.857273
             |
       DOSCC |   .9075697   .1044614    -0.84   0.399     .7242802    1.137243
             |
      PrevCM |
          1  |   1.605251   .5762427     1.32   0.187     .7942988    3.244156
       _cons |   22.79676   15.24329     4.68   0.000      6.14764    84.53525
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|    .212114   .2119145                      .0299342     1.50304
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.133847   .6653042                      .3590023     3.58106
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 13.23               Prob > chi2 = 0.0013

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PCSampDIM stays out
. 
. *Step 5e: remove PrevCM
. meglm Cure i.Tx i.Parity DOSCC || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -352.35019  
Iteration 1:   log likelihood = -351.27832  
Iteration 2:   log likelihood = -351.27542  
Iteration 3:   log likelihood = -351.27542  

Refining starting values:

Grid node 0:   log likelihood = -348.04582

Fitting full model:

Iteration 0:   log likelihood = -348.04582  (not concave)
Iteration 1:   log likelihood = -346.05509  (not concave)
Iteration 2:   log likelihood = -345.20918  
Iteration 3:   log likelihood = -344.62142  
Iteration 4:   log likelihood =  -344.4343  
Iteration 5:   log likelihood = -344.42991  
Iteration 6:   log likelihood = -344.42989  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(5)      =       2.11
Log likelihood = -344.42989                     Prob > chi2       =     0.8341
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .9905228   .2902217    -0.03   0.974     .5577809    1.758998
          2  |    1.11603   .3356713     0.36   0.715     .6189533    2.012306
             |
      Parity |
          2  |   .7635097   .2157108    -0.96   0.340     .4388626    1.328313
          3  |   1.068914   .3413763     0.21   0.835      .571606     1.99889
             |
       DOSCC |   .9225645   .1055088    -0.70   0.481     .7373086    1.154368
       _cons |   22.68037   15.18691     4.66   0.000     6.104928    84.25968
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .2105352    .211072                      .0295089    1.502092
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.184413   .6728698                      .3889843    3.606403
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 13.69               Prob > chi2 = 0.0011

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PrevCM stays out
. 
. *Step 5f: remove DOSCC
. meglm Cure i.Tx i.Parity || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -352.69991  
Iteration 1:   log likelihood = -351.74072  
Iteration 2:   log likelihood = -351.73754  
Iteration 3:   log likelihood = -351.73754  

Refining starting values:

Grid node 0:   log likelihood = -348.27189

Fitting full model:

Iteration 0:   log likelihood = -348.27189  (not concave)
Iteration 1:   log likelihood = -346.25817  (not concave)
Iteration 2:   log likelihood = -345.43308  
Iteration 3:   log likelihood = -344.76925  
Iteration 4:   log likelihood = -344.68144  
Iteration 5:   log likelihood = -344.67848  
Iteration 6:   log likelihood = -344.67848  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(4)      =       1.62
Log likelihood = -344.67848                     Prob > chi2       =     0.8058
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .9944239   .2911706    -0.02   0.985      .560192     1.76525
          2  |   1.113221   .3346209     0.36   0.721      .617619    2.006515
             |
      Parity |
          2  |   .7414364   .2071194    -1.07   0.284     .4288365    1.281905
          3  |   1.024465    .321302     0.08   0.939     .5540325    1.894343
             |
       _cons |   15.99591    6.87199     6.45   0.000     6.891676    37.12727
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .2148922   .2129964                      .0307984    1.499384
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.185891   .6733975                      .3896705    3.609042
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 14.12               Prob > chi2 = 0.0009

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOSCC stays out
. 
. *Step 5g: remove Parity
. meglm Cure i.Tx || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -353.20902  
Iteration 1:   log likelihood = -352.40395  
Iteration 2:   log likelihood = -352.40224  
Iteration 3:   log likelihood = -352.40224  

Refining starting values:

Grid node 0:   log likelihood =  -349.0007

Fitting full model:

Iteration 0:   log likelihood =  -349.0007  (not concave)
Iteration 1:   log likelihood = -346.96632  (not concave)
Iteration 2:   log likelihood = -346.14666  
Iteration 3:   log likelihood =  -345.4633  
Iteration 4:   log likelihood = -345.40105  
Iteration 5:   log likelihood = -345.39982  
Iteration 6:   log likelihood = -345.39982  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.15
Log likelihood = -345.39982                     Prob > chi2       =     0.9260
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.026987   .3011334     0.09   0.928     .5780635    1.824545
          2  |   1.120379   .3387493     0.38   0.707     .6194438    2.026412
             |
       _cons |   14.50972   5.793927     6.70   0.000     6.633808    31.73623
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .2096099   .2126392                      .0287018    1.530788
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|    1.24887   .6858433                      .4256592    3.664144
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 14.00               Prob > chi2 = 0.0009

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. Parity stays out



Final Model: IMI cure

. *Step 6: Report final model
. meglm Cure i.Tx || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -353.20902  
Iteration 1:   log likelihood = -352.40395  
Iteration 2:   log likelihood = -352.40224  
Iteration 3:   log likelihood = -352.40224  

Refining starting values:

Grid node 0:   log likelihood =  -349.0007

Fitting full model:

Iteration 0:   log likelihood =  -349.0007  (not concave)
Iteration 1:   log likelihood = -346.96632  (not concave)
Iteration 2:   log likelihood = -346.14666  
Iteration 3:   log likelihood =  -345.4633  
Iteration 4:   log likelihood = -345.40105  
Iteration 5:   log likelihood = -345.39982  
Iteration 6:   log likelihood = -345.39982  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.15
Log likelihood = -345.39982                     Prob > chi2       =     0.9260
------------------------------------------------------------------------------
        Cure | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.026987   .3011334     0.09   0.928     .5780635    1.824545
          2  |   1.120379   .3387493     0.38   0.707     .6194438    2.026412
             |
       _cons |   14.50972   5.793927     6.70   0.000     6.633808    31.73623
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .2096099   .2126392                      .0287018    1.530788
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|    1.24887   .6858433                      .4256592    3.664144
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 14.00               Prob > chi2 = 0.0009

Note: LR test is conservative and provided only for reference.

. meglm Cure i.Tx || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -353.20902  
Iteration 1:   log likelihood = -352.40395  
Iteration 2:   log likelihood = -352.40224  
Iteration 3:   log likelihood = -352.40224  

Refining starting values:

Grid node 0:   log likelihood =  -349.0007

Fitting full model:

Iteration 0:   log likelihood =  -349.0007  (not concave)
Iteration 1:   log likelihood = -346.96632  (not concave)
Iteration 2:   log likelihood = -346.14666  
Iteration 3:   log likelihood =  -345.4633  
Iteration 4:   log likelihood = -345.40105  
Iteration 5:   log likelihood = -345.39982  
Iteration 6:   log likelihood = -345.39982  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.15
Log likelihood = -345.39982                     Prob > chi2       =     0.9260
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0266294   .2932202     0.09   0.928    -.5480716    .6013304
          2  |   .1136667   .3023525     0.38   0.707    -.4789333    .7062667
             |
       _cons |   2.674819   .3993134     6.70   0.000     1.892179    3.457459
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .2096099   .2126392                      .0287018    1.530788
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|    1.24887   .6858433                      .4256592    3.664144
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 14.00               Prob > chi2 = 0.0009

Note: LR test is conservative and provided only for reference.

. margins Tx

Adjusted predictions                            Number of obs     =        935
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          0  |   .8968886   .0246228    36.43   0.000     .8486288    .9451485
          1  |   .8990069   .0236782    37.97   0.000     .8525985    .9454152
          2  |   .9056856   .0229709    39.43   0.000     .8606636    .9507077
------------------------------------------------------------------------------

. margins, dydx(Tx)

Conditional marginal effects                    Number of obs     =        935
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()
dy/dx w.r.t. : 2.Tx 3.Tx

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0021182   .0233467     0.09   0.928    -.0436405    .0478769
          2  |    .008797    .023463     0.37   0.708    -.0371896    .0547836
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. 
. *Report ICC
. meglm Cure || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -353.30048  
Iteration 1:   log likelihood = -352.52467  
Iteration 2:   log likelihood = -352.52326  
Iteration 3:   log likelihood = -352.52326  

Refining starting values:

Grid node 0:   log likelihood = -349.06993

Fitting full model:

Iteration 0:   log likelihood = -349.06993  (not concave)
Iteration 1:   log likelihood = -347.04046  (not concave)
Iteration 2:   log likelihood =  -346.2167  
Iteration 3:   log likelihood = -345.54666  
Iteration 4:   log likelihood = -345.47877  
Iteration 5:   log likelihood = -345.47707  
Iteration 6:   log likelihood = -345.47707  

Mixed-effects GLM                               Number of obs     =        935
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7         29      133.6        432
          CowID |        599          1        1.6          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(0)      =          .
Log likelihood = -345.47707                     Prob > chi2       =          .
------------------------------------------------------------------------------
        Cure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |   2.723899   .3540443     7.69   0.000     2.029985    3.417813
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|    .211154   .2139055                      .0289938    1.537775
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   1.254913   .6866821                      .4293786    3.667641
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 14.09               Prob > chi2 = 0.0009

Note: LR test is conservative and provided only for reference.

. estat icc

Intraclass correlation

------------------------------------------------------------------------------
                       Level |        ICC   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
                      FARMID |    .044398    .042782      .0063969    .2510963
                CowID|FARMID |   .3082605   .1076934      .1420787    .5452763
------------------------------------------------------------------------------



Outcome 2: IMI at Calving

CrossTable(SDCTQTR$Tx,SDCTQTR$IMIPC,prop.c=FALSE,prop.t=FALSE,prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  4173 
## 
##  
##              | SDCTQTR$IMIPC 
##   SDCTQTR$Tx |         0 |         1 | Row Total | 
## -------------|-----------|-----------|-----------|
##            0 |      1075 |       317 |      1392 | 
##              |     0.772 |     0.228 |     0.334 | 
## -------------|-----------|-----------|-----------|
##            1 |      1085 |       341 |      1426 | 
##              |     0.761 |     0.239 |     0.342 | 
## -------------|-----------|-----------|-----------|
##            2 |      1052 |       303 |      1355 | 
##              |     0.776 |     0.224 |     0.325 | 
## -------------|-----------|-----------|-----------|
## Column Total |      3212 |       961 |      4173 | 
## -------------|-----------|-----------|-----------|
## 
## 

Logistic regression model for IMI at calving

Model building plan

Model type: Logistic regression with mixed effects (generalized linear mixed model with binomial family / logit link).

Step 1: Identify potential confouders using a directed acyclic graph (DAG)

Step 2: Create model with all potential confounders

Step 3: Investigate potential effect measure modification

Step 4: Remove unneccesary covariates in backwards stepwise fashion using 10% rule (i.e. if odds ratio for algorithm or culture changes by >10% after removing the covariate, the covariate is retained in the model)

Step 5: Report final model

Step 1: DAG

This is used to identify variables that could be confounders if they are not balanced between treatment groups.

library(DiagrammeR)
mermaid("graph LR
        T(Treatment)-->U(IMI at calving)
        A(Age)-->T
        P(Parity)-->T
        M(Yield at dry-off)-->T
        S(SCC during prev lactation)-->T
        C(CM in prev lact)-->T
        D(DIM at dry off) --> M
        I(IMI at dry off) --> T
        K(DIM at post calving sample) --> T
        I-->U
        P-->I
        A-->I
        C-->I
        I-->S
        I-->M
        D-->S
        D-->U
        K-->U
        A-->U
        P-->U
        M-->U
        S-->U
        C-->U
        C-->M
        P-->C
        P-->S
        P-->M
        A-->P
        A-->C
        A-->S
        A-->M
        M-->S
        C-->S
style D fill:#FFFFFF, stroke-width:0px
style K fill:#FFFFFF, stroke-width:0px
style A fill:#FFFFFF, stroke-width:0px
        style T fill:#FFFFFF, stroke-width:2px
        style P fill:#FFFFFF, stroke-width:0px
        style M fill:#FFFFFF, stroke-width:0px
        style S fill:#FFFFFF, stroke-width:0px
        style C fill:#FFFFFF, stroke-width:0px
        style I fill:#FFFFFF, stroke-width:0px
        style U fill:#FFFFFF, stroke-width:2px
        ")

According to this DAG, I may need to control for the following variables.

Parity [“Parity”] or Age [“Age”] <- will use Parity

Yield at most recent test before dry off [“DOMY”]

Somatic cell count at last herd test during previous lactation [“DOSCC” or “PrevSCCHi”] <- will use DOSCC

Clinical mastitis in previous lactation [“PrevCM”]

IMI at dry-off [“DOIMI”]

Days in milk at dry-off [“DODIM”]

Days in milk at post-calving sample [“PCSampDIM”]





Steps 2 to 5 done in STATA (log below)

. 
. *Outcome 2: IMI at calving 
. *Step 2: Create full model with all potential confounders
. meglm IMIPC i.Tx Parity DOMY DOSCC PrevCM IMIDO DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(
> logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1972.9477  
Iteration 1:   log likelihood = -1969.9397  
Iteration 2:   log likelihood = -1969.9381  
Iteration 3:   log likelihood = -1969.9381  

Refining starting values:

Grid node 0:   log likelihood = -1880.0448

Fitting full model:

Iteration 0:   log likelihood = -1880.0448  (not concave)
Iteration 1:   log likelihood = -1875.7902  
Iteration 2:   log likelihood = -1873.2827  
Iteration 3:   log likelihood = -1871.0224  
Iteration 4:   log likelihood = -1870.9691  
Iteration 5:   log likelihood =  -1870.969  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(9)      =      29.28
Log likelihood =  -1870.969                     Prob > chi2       =     0.0006
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.064306   .1348285     0.49   0.623     .8302987    1.364264
          2  |    1.00599   .1294595     0.05   0.963     .7817247    1.294594
             |
      Parity |   1.139873   .0763847     1.95   0.051     .9995769    1.299861
        DOMY |   1.003524   .0073828     0.48   0.632     .9891581    1.018099
       DOSCC |   1.067242   .0535843     1.30   0.195     .9672202    1.177606
      PrevCM |   1.063003   .1592066     0.41   0.683     .7925916    1.425671
       IMIDO |   1.468733   .1509537     3.74   0.000     1.200765    1.796503
       DODIM |   1.001932   .0011586     1.67   0.095     .9996633    1.004205
   PCSampDIM |    1.04424   .0241874     1.87   0.062     .9978939     1.09274
       _cons |   .0254663   .0162636    -5.75   0.000     .0072838    .0890373
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5790281    .337259                      .1848891    1.813376
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7491731   .1480878                      .5085416    1.103666
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 197.94              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. 
. *Step 3: Explore effect measure modification
. *Will test Tx:Farm, Tx:Parity, Tx:IMIDO
. 
. *Tx: Farm
. meglm IMIPC i.Tx##i.FARMID i.Parity DOMY DOSCC i.PrevCM i.IMIDO DODIM PCSampDIM|| CowID:, or family(binomial) 
> link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood =   -1885.34  
Iteration 1:   log likelihood = -1870.7527  
Iteration 2:   log likelihood =  -1870.018  
Iteration 3:   log likelihood = -1870.0046  
Iteration 4:   log likelihood = -1870.0046  

Refining starting values:

Grid node 0:   log likelihood = -1861.3111

Fitting full model:

Iteration 0:   log likelihood = -1861.3111  
Iteration 1:   log likelihood = -1860.7842  
Iteration 2:   log likelihood = -1850.7289  
Iteration 3:   log likelihood = -1850.3284  
Iteration 4:   log likelihood = -1850.3279  
Iteration 5:   log likelihood = -1850.3279  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit
Group variable:           CowID                 Number of groups  =      1,020

                                                Obs per group:
                                                              min =          1
                                                              avg =        3.7
                                                              max =         14

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(28)     =     198.85
Log likelihood = -1850.3279                     Prob > chi2       =     0.0000
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.563937    .948898     0.74   0.461     .4761725    5.136585
          2  |   .5807539   .4425017    -0.71   0.476     .1304442     2.58559
             |
      FARMID |
          2  |   .2885552   .2477606    -1.45   0.148     .0536249    1.552714
          3  |   3.649367   1.869004     2.53   0.011     1.337454     9.95763
          4  |   9.951948   4.678565     4.89   0.000     3.960455    25.00755
          5  |   3.992145   1.917637     2.88   0.004     1.557147    10.23489
          6  |   1.899263    1.32687     0.92   0.359     .4829647    7.468866
          7  |     2.0054   1.086091     1.28   0.199     .6937521    5.796923
             |
   Tx#FARMID |
        1#2  |   2.400507   2.560048     0.82   0.412     .2968449    19.41228
        1#3  |   .6087728   .4151604    -0.73   0.467     .1599438    2.317091
        1#4  |   .4746733    .301876    -1.17   0.241     .1364771    1.650934
        1#5  |   1.148546   .7504808     0.21   0.832      .319123    4.133699
        1#6  |      .5654   .5392353    -0.60   0.550     .0872057    3.665783
        1#7  |   .5433689   .4203369    -0.79   0.430     .1192961    2.474933
        2#2  |   6.723449   7.646861     1.68   0.094     .7235771    62.47402
        2#3  |   2.235757   1.839998     0.98   0.328     .4455508    11.21895
        2#4  |   1.208298   .9491019     0.24   0.810      .259159    5.633542
        2#5  |   2.313727   1.856495     1.05   0.296     .4800899    11.15069
        2#6  |   1.765391   1.874891     0.54   0.593     .2202128     14.1527
        2#7  |   1.953289   1.726443     0.76   0.449     .3454775    11.04367
             |
      Parity |
          2  |   1.209252   .1501758     1.53   0.126      .947997    1.542505
          3  |   1.314272   .1736397     2.07   0.039     1.014438    1.702726
             |
        DOMY |   1.003167   .0072287     0.44   0.661     .9890984    1.017435
       DOSCC |   1.061709   .0520662     1.22   0.222     .9644122    1.168822
             |
      PrevCM |
          1  |   1.018864   .1489532     0.13   0.898     .7650234    1.356932
     1.IMIDO |   1.449771    .147576     3.65   0.000     1.187554    1.769887
       DODIM |   1.002011   .0011344     1.77   0.076     .9997903    1.004237
   PCSampDIM |   1.038967   .0233972     1.70   0.090     .9941066    1.085852
       _cons |   .0131376   .0090715    -6.27   0.000     .0033944    .0508473
-------------+----------------------------------------------------------------
CowID        |
   var(_cons)|   .6415448   .1390202                      .4195416    .9810226
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 39.35       Prob >= chibar2 = 0.0000

. testparm Tx#FARMID

 ( 1)  [IMIPC]2.Tx#2.FARMID = 0
 ( 2)  [IMIPC]2.Tx#3.FARMID = 0
 ( 3)  [IMIPC]2.Tx#4.FARMID = 0
 ( 4)  [IMIPC]2.Tx#5.FARMID = 0
 ( 5)  [IMIPC]2.Tx#6.FARMID = 0
 ( 6)  [IMIPC]2.Tx#7.FARMID = 0
 ( 7)  [IMIPC]3.Tx#2.FARMID = 0
 ( 8)  [IMIPC]3.Tx#3.FARMID = 0
 ( 9)  [IMIPC]3.Tx#4.FARMID = 0
 (10)  [IMIPC]3.Tx#5.FARMID = 0
 (11)  [IMIPC]3.Tx#6.FARMID = 0
 (12)  [IMIPC]3.Tx#7.FARMID = 0

           chi2( 12) =   15.80
         Prob > chi2 =    0.2006

. 
. *Tx:Parity
. meglm IMIPC i.Tx##i.Parity DOMY DOSCC i.PrevCM i.IMIDO DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial
> ) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1961.9816  
Iteration 1:   log likelihood = -1958.8838  
Iteration 2:   log likelihood = -1958.8824  
Iteration 3:   log likelihood = -1958.8824  

Refining starting values:

Grid node 0:   log likelihood = -1873.0968

Fitting full model:

Iteration 0:   log likelihood = -1873.0968  (not concave)
Iteration 1:   log likelihood = -1868.7914  
Iteration 2:   log likelihood = -1867.0414  
Iteration 3:   log likelihood = -1863.3268  
Iteration 4:   log likelihood = -1863.0241  
Iteration 5:   log likelihood = -1863.0203  
Iteration 6:   log likelihood = -1863.0203  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(14)     =      45.25
Log likelihood = -1863.0203                     Prob > chi2       =     0.0000
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .9549044   .1816876    -0.24   0.808     .6576632    1.386488
          2  |   .8320818   .1655725    -0.92   0.356     .5633638    1.228975
             |
      Parity |
          2  |   1.311768   .2787919     1.28   0.202     .8648685    1.989592
          3  |   .7827437   .1839262    -1.04   0.297     .4938641      1.2406
             |
   Tx#Parity |
        1#2  |   .9709453   .2871704    -0.10   0.921     .5438013    1.733601
        1#3  |    1.62389    .505994     1.56   0.120     .8817132    2.990788
        2#2  |   .7912254   .2374283    -0.78   0.435     .4394146    1.424708
        2#3  |   2.769359   .8868991     3.18   0.001     1.478354    5.187764
             |
        DOMY |   1.003261   .0072939     0.45   0.654     .9890666    1.017659
       DOSCC |   1.060503   .0529514     1.18   0.239     .9616363    1.169533
             |
      PrevCM |
          1  |   1.054289   .1560901     0.36   0.721     .7887456     1.40923
     1.IMIDO |   1.475639   .1510596     3.80   0.000     1.207379    1.803503
       DODIM |   1.001714   .0011489     1.49   0.135     .9994644    1.003968
   PCSampDIM |   1.046403   .0239728     1.98   0.048     1.000456    1.094459
       _cons |   .0375454   .0236885    -5.20   0.000     .0109021    .1293017
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|    .558679   .3252641                      .1784806    1.748774
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6882053   .1440497                      .4566161    1.037253
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 191.72              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. testparm Tx#Parity

 ( 1)  [IMIPC]2.Tx#2.Parity = 0
 ( 2)  [IMIPC]2.Tx#3.Parity = 0
 ( 3)  [IMIPC]3.Tx#2.Parity = 0
 ( 4)  [IMIPC]3.Tx#3.Parity = 0

           chi2(  4) =   15.63
         Prob > chi2 =    0.0036

. 
. *Significant interaction
. *Will explore this further
. margins Tx#Parity

Predictive margins                              Number of obs     =      3,778
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   Tx#Parity |
        0#1  |   .1630162   .0381247     4.28   0.000     .0882932    .2377393
        0#2  |   .1966229    .043449     4.53   0.000     .1114645    .2817813
        0#3  |   .1364337    .035299     3.87   0.000     .0672489    .2056185
        1#1  |   .1577389   .0363894     4.33   0.000      .086417    .2290608
        1#2  |   .1868145    .043116     4.33   0.000     .1023087    .2713203
        1#3  |   .1865577   .0431494     4.32   0.000     .1019864    .2711289
        2#1  |    .142739   .0344418     4.14   0.000     .0752343    .2102436
        2#2  |   .1466827   .0362533     4.05   0.000     .0756276    .2177378
        2#3  |   .2416321   .0509907     4.74   0.000     .1416921     .341572
------------------------------------------------------------------------------

. *It appears that within Algorithm cows, the IMIPC risk is higher in 3rd or greater lactation cows than early l
> actation cows. The opposite was observed in the blanket group, where lact 3 cows had the lowest IMIPC risk. Gi
> ven the wide confidence intervals around these estimates, I will not report a stratified model. 
. 
. *Decision: Use main effects model
. 
. *Tx:Parity
. meglm IMIPC i.Tx##i.IMIDO i.Parity DOMY DOSCC i.PrevCM DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial
> ) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1971.8906  
Iteration 1:   log likelihood = -1968.8788  
Iteration 2:   log likelihood = -1968.8772  
Iteration 3:   log likelihood = -1968.8772  

Refining starting values:

Grid node 0:   log likelihood = -1879.4274

Fitting full model:

Iteration 0:   log likelihood = -1879.4274  (not concave)
Iteration 1:   log likelihood = -1875.1663  
Iteration 2:   log likelihood = -1872.5916  
Iteration 3:   log likelihood = -1870.2992  
Iteration 4:   log likelihood =  -1870.242  
Iteration 5:   log likelihood = -1870.2418  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(12)     =      30.76
Log likelihood = -1870.2418                     Prob > chi2       =     0.0021
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.120922   .1640263     0.78   0.435     .8414291    1.493251
          2  |   1.089189   .1609832     0.58   0.563     .8152577    1.455163
             |
     1.IMIDO |      1.691   .2989301     2.97   0.003     1.195833    2.391204
             |
    Tx#IMIDO |
        1#1  |   .8526381   .2073981    -0.66   0.512     .5293173    1.373452
        2#1  |   .7651783   .1907092    -1.07   0.283     .4694761     1.24713
             |
      Parity |
          2  |   1.206506   .1526585     1.48   0.138     .9415154    1.546078
          3  |   1.287884   .1736213     1.88   0.061     .9888379    1.677368
             |
        DOMY |   1.003458   .0073703     0.47   0.638     .9891158    1.018008
       DOSCC |   1.066234   .0536436     1.27   0.202     .9661122    1.176732
             |
      PrevCM |
          1  |   1.057345   .1582839     0.37   0.710     .7884829    1.417885
       DODIM |   1.001948   .0011576     1.68   0.092     .9996815    1.004219
   PCSampDIM |    1.04437   .0241635     1.88   0.061     .9980679    1.092819
       _cons |   .0291986   .0185135    -5.57   0.000     .0084266    .1011744
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5753079   .3351308                       .183677    1.801963
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7431065   .1477216                      .5033167    1.097137
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 197.27              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. testparm Tx#IMIDO

 ( 1)  [IMIPC]2.Tx#1.IMIDO = 0
 ( 2)  [IMIPC]3.Tx#1.IMIDO = 0

           chi2(  2) =    1.17
         Prob > chi2 =    0.5571

. 
. *Step 4: Remove unnecessary covariates from the model using 10% rule
. 
. *I will remove in this order: DODIM DOMY PCSampDIM Parity PrevCM DOSCC IMIDO
. 
. *Step 4a: Full model
. meglm IMIPC i.Tx i.IMIDO i.Parity DOMY DOSCC i.PrevCM DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial)
>  link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1972.9357  
Iteration 1:   log likelihood = -1969.9254  
Iteration 2:   log likelihood = -1969.9238  
Iteration 3:   log likelihood = -1969.9238  

Refining starting values:

Grid node 0:   log likelihood = -1879.9861

Fitting full model:

Iteration 0:   log likelihood = -1879.9861  (not concave)
Iteration 1:   log likelihood =  -1875.724  
Iteration 2:   log likelihood = -1873.1668  
Iteration 3:   log likelihood = -1870.8826  
Iteration 4:   log likelihood = -1870.8268  
Iteration 5:   log likelihood = -1870.8266  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(10)     =      29.56
Log likelihood = -1870.8266                     Prob > chi2       =     0.0010
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.068751   .1355891     0.52   0.600     .8334644    1.370458
          2  |   1.007114   .1295462     0.06   0.956     .7826865    1.295895
             |
     1.IMIDO |   1.466731   .1507505     3.73   0.000     1.199124     1.79406
             |
      Parity |
          2  |   1.207196   .1528663     1.49   0.137     .9418695    1.547265
          3  |   1.289672   .1739904     1.89   0.059     .9900183    1.680024
             |
        DOMY |   1.003475   .0073782     0.47   0.637     .9891178    1.018041
       DOSCC |   1.064984   .0536091     1.25   0.211     .9649292    1.175414
             |
      PrevCM |
          1  |   1.064525   .1593264     0.42   0.676     .7938848    1.427429
       DODIM |   1.001927    .001158     1.67   0.096     .9996601      1.0042
   PCSampDIM |   1.044657   .0241876     1.89   0.059     .9983099    1.093156
       _cons |   .0306514   .0193903    -5.51   0.000      .008871    .1059076
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5771543   .3361326                      .1843127    1.807294
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7466678   .1479631                      .5063484    1.101046
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 198.19              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. 
. *Step 4b: remove DODIM
. meglm IMIPC i.Tx i.IMIDO i.Parity DOMY DOSCC i.PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(
> logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1974.0498  
Iteration 1:   log likelihood =  -1971.052  
Iteration 2:   log likelihood = -1971.0504  
Iteration 3:   log likelihood = -1971.0504  

Refining starting values:

Grid node 0:   log likelihood = -1881.0078

Fitting full model:

Iteration 0:   log likelihood = -1881.0078  (not concave)
Iteration 1:   log likelihood = -1876.7399  
Iteration 2:   log likelihood = -1874.3513  
Iteration 3:   log likelihood = -1872.2513  
Iteration 4:   log likelihood = -1872.2029  
Iteration 5:   log likelihood = -1872.2028  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(9)      =      26.84
Log likelihood = -1872.2028                     Prob > chi2       =     0.0015
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.081468   .1373188     0.62   0.537      .843204    1.387057
          2  |   1.012999   .1304689     0.10   0.920     .7870074    1.303885
             |
     1.IMIDO |   1.465231   .1506413     3.72   0.000     1.197826    1.792333
             |
      Parity |
          2  |   1.204918   .1528546     1.47   0.142      .939669    1.545041
          3  |   1.281913   .1732054     1.84   0.066     .9836681    1.670585
             |
        DOMY |   1.001252   .0072509     0.17   0.863     .9871405    1.015564
       DOSCC |   1.066214   .0537145     1.27   0.203     .9659663    1.176866
             |
      PrevCM |
          1  |   1.089519   .1628479     0.57   0.566     .8128451    1.460367
   PCSampDIM |   1.044139   .0242295     1.86   0.063     .9977137    1.092724
       _cons |   .0606924   .0288252    -5.90   0.000     .0239257    .1539582
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5609821   .3271093                      .1789008     1.75908
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7554017   .1486741                      .5136284    1.110982
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 197.70              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DODIM stays out
. 
. *Step 4c: remove DOMY
. meglm IMIPC i.Tx i.IMIDO i.Parity DOSCC i.PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(logit
> )

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1975.4529  
Iteration 1:   log likelihood = -1972.4662  
Iteration 2:   log likelihood = -1972.4646  
Iteration 3:   log likelihood = -1972.4646  

Refining starting values:

Grid node 0:   log likelihood =  -1880.696

Fitting full model:

Iteration 0:   log likelihood =  -1880.696  (not concave)
Iteration 1:   log likelihood = -1876.4569  
Iteration 2:   log likelihood = -1875.1531  
Iteration 3:   log likelihood = -1872.8089  
Iteration 4:   log likelihood = -1872.2206  
Iteration 5:   log likelihood = -1872.2177  
Iteration 6:   log likelihood = -1872.2177  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(8)      =      26.82
Log likelihood = -1872.2177                     Prob > chi2       =     0.0008
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.082235   .1373363     0.62   0.533     .8439246    1.387841
          2  |   1.013459   .1304933     0.10   0.917     .7874175    1.304389
             |
     1.IMIDO |   1.466433   .1506025     3.73   0.000     1.199068    1.793414
             |
      Parity |
          2  |   1.204918   .1528411     1.47   0.142     .9396899    1.545007
          3  |   1.281342   .1730855     1.84   0.066     .9832947    1.669731
             |
       DOSCC |   1.062972   .0501627     1.29   0.196     .9690651     1.16598
             |
      PrevCM |
          1  |    1.09126   .1627884     0.59   0.558     .8146115    1.461861
   PCSampDIM |   1.043941   .0241971     1.86   0.064     .9975763     1.09246
       _cons |   .0636529   .0246084    -7.12   0.000      .029836    .1357987
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5624046   .3278289                      .1794232    1.762866
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7551785   .1486539                       .513445    1.110722
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 200.49              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOMY stays out
. 
. *Step 4d: remove PCSampDIM
. meglm IMIPC i.Tx i.IMIDO i.Parity DOSCC i.PrevCM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2006.6564  
Iteration 1:   log likelihood = -2003.9169  
Iteration 2:   log likelihood = -2003.9151  
Iteration 3:   log likelihood = -2003.9151  

Refining starting values:

Grid node 0:   log likelihood = -1881.5566

Fitting full model:

Iteration 0:   log likelihood = -1881.5566  
Iteration 1:   log likelihood =  -1880.152  
Iteration 2:   log likelihood = -1877.7157  
Iteration 3:   log likelihood = -1875.7699  
Iteration 4:   log likelihood = -1875.6956  
Iteration 5:   log likelihood = -1875.6945  
Iteration 6:   log likelihood = -1875.6945  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(7)      =      23.74
Log likelihood = -1875.6945                     Prob > chi2       =     0.0013
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.071557   .1356024     0.55   0.585     .8361772    1.373196
          2  |   1.011112   .1299895     0.09   0.931     .7859015     1.30086
             |
     1.IMIDO |   1.457562   .1495204     3.67   0.000     1.192088    1.782154
             |
      Parity |
          2  |   1.195244   .1513462     1.41   0.159     .9325549     1.53193
          3  |   1.265434   .1706125     1.75   0.081     .9715739    1.648173
             |
       DOSCC |   1.065019   .0502522     1.34   0.182     .9709433    1.168209
             |
      PrevCM |
          1  |    1.09649   .1635346     0.62   0.537     .8185657    1.468778
       _cons |   .0779274   .0303872    -6.54   0.000     .0362887    .1673437
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6821897   .3879751                      .2237739      2.0797
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7545164   .1487097                      .5127469    1.110285
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 256.44              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PCSampdim stays out
. 
. *Step 4e: remove Parity
. meglm IMIPC i.Tx i.IMIDO DOSCC i.PrevCM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2007.0395  
Iteration 1:   log likelihood = -2004.3244  
Iteration 2:   log likelihood = -2004.3226  
Iteration 3:   log likelihood = -2004.3226  

Refining starting values:

Grid node 0:   log likelihood = -1882.4385

Fitting full model:

Iteration 0:   log likelihood = -1882.4385  
Iteration 1:   log likelihood = -1881.1409  
Iteration 2:   log likelihood = -1879.1052  
Iteration 3:   log likelihood =  -1877.531  
Iteration 4:   log likelihood = -1877.4714  
Iteration 5:   log likelihood = -1877.4705  
Iteration 6:   log likelihood = -1877.4705  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(5)      =      20.23
Log likelihood = -1877.4705                     Prob > chi2       =     0.0011
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.060385   .1344509     0.46   0.644     .8270582    1.359538
          2  |   1.004622   .1296456     0.04   0.971     .7801103    1.293748
             |
     1.IMIDO |   1.458653   .1497232     3.68   0.000     1.192836    1.783707
       DOSCC |   1.091994   .0495907     1.94   0.053     .9989984    1.193647
             |
      PrevCM |
          1  |   1.135848   .1686784     0.86   0.391     .8490106    1.519593
       _cons |   .0784321   .0304172    -6.56   0.000     .0366763    .1677269
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6709123    .382098                        .21973    2.048529
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7729361    .149883                      .5285473    1.130325
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 253.70              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. Parity stays out. 
. 
. *Step 4f: remove PrevCM
. meglm IMIPC i.Tx i.IMIDO DOSCC || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood =  -2008.051  
Iteration 1:   log likelihood = -2005.3031  
Iteration 2:   log likelihood = -2005.3013  
Iteration 3:   log likelihood = -2005.3013  

Refining starting values:

Grid node 0:   log likelihood = -1882.8382

Fitting full model:

Iteration 0:   log likelihood = -1882.8382  
Iteration 1:   log likelihood = -1881.5595  
Iteration 2:   log likelihood = -1879.4886  
Iteration 3:   log likelihood = -1877.8979  
Iteration 4:   log likelihood = -1877.8379  
Iteration 5:   log likelihood =  -1877.837  
Iteration 6:   log likelihood =  -1877.837  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(4)      =      19.52
Log likelihood =  -1877.837                     Prob > chi2       =     0.0006
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.059386   .1342875     0.46   0.649     .8263352    1.358164
          2  |   1.001371   .1291303     0.01   0.992     .7777318     1.28932
             |
     1.IMIDO |   1.462474   .1500249     3.71   0.000     1.196106    1.788163
       DOSCC |   1.099267   .0491942     2.11   0.034     1.006955     1.20004
       _cons |   .0774261   .0300822    -6.58   0.000     .0361553    .1658069
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6759702    .384812                      .2214935    2.062976
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7725109   .1498084                      .5282461    1.129726
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 254.93              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PrevCM stays out
. 
. *Step 4g: DOSCC
. meglm IMIPC i.Tx i.IMIDO || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2017.9657  
Iteration 1:   log likelihood =  -2015.129  
Iteration 2:   log likelihood = -2015.1271  
Iteration 3:   log likelihood = -2015.1271  

Refining starting values:

Grid node 0:   log likelihood = -1884.5227

Fitting full model:

Iteration 0:   log likelihood = -1884.5227  
Iteration 1:   log likelihood = -1883.4111  
Iteration 2:   log likelihood = -1881.4923  
Iteration 3:   log likelihood = -1880.1253  
Iteration 4:   log likelihood = -1880.0701  
Iteration 5:   log likelihood =  -1880.069  
Iteration 6:   log likelihood =  -1880.069  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(3)      =      15.12
Log likelihood =  -1880.069                     Prob > chi2       =     0.0017
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.044838   .1326597     0.35   0.730     .8146571    1.340057
          2  |    .994684   .1286252    -0.04   0.967     .7719942    1.281611
             |
     1.IMIDO |   1.485706   .1522237     3.86   0.000     1.215401    1.816126
       _cons |   .1170025   .0395811    -6.34   0.000     .0602893    .2270651
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6990755   .3968672                      .2297706    2.126932
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|    .787457    .151022                       .540729    1.146764
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 270.12              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOSCC stays out
. 
. *Step 4h: IMIDO
. meglm IMIPC i.Tx || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2255.3529  
Iteration 1:   log likelihood = -2251.3561  
Iteration 2:   log likelihood = -2251.3524  
Iteration 3:   log likelihood = -2251.3524  

Refining starting values:

Grid node 0:   log likelihood = -2107.8746

Fitting full model:

Iteration 0:   log likelihood = -2107.8746  
Iteration 1:   log likelihood = -2106.1639  
Iteration 2:   log likelihood =   -2104.97  
Iteration 3:   log likelihood = -2104.0976  
Iteration 4:   log likelihood = -2103.8445  
Iteration 5:   log likelihood = -2103.8382  
Iteration 6:   log likelihood = -2103.8382  

Mixed-effects GLM                               Number of obs     =      4,173
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        168      596.1      1,270
          CowID |      1,110          1        3.8          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.30
Log likelihood = -2103.8382                     Prob > chi2       =     0.8588
------------------------------------------------------------------------------
       IMIPC | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.028108   .1224685     0.23   0.816     .8140355    1.298477
          2  |   .9624265    .117121    -0.31   0.753     .7581968    1.221668
             |
       _cons |   .1369277   .0470221    -5.79   0.000     .0698525    .2684112
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .7402117   .4188413                      .2441811    2.243881
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7458774   .1363842                      .5212242    1.067358
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 295.03              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. IMIDO stays out



Final model: IMI post calving

. *Report final model
. meglm IMIPC i.Tx || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2255.3529  
Iteration 1:   log likelihood = -2251.3561  
Iteration 2:   log likelihood = -2251.3524  
Iteration 3:   log likelihood = -2251.3524  

Refining starting values:

Grid node 0:   log likelihood = -2107.8746

Fitting full model:

Iteration 0:   log likelihood = -2107.8746  
Iteration 1:   log likelihood = -2106.1639  
Iteration 2:   log likelihood =   -2104.97  
Iteration 3:   log likelihood = -2104.0976  
Iteration 4:   log likelihood = -2103.8445  
Iteration 5:   log likelihood = -2103.8382  
Iteration 6:   log likelihood = -2103.8382  

Mixed-effects GLM                               Number of obs     =      4,173
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        168      596.1      1,270
          CowID |      1,110          1        3.8          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.30
Log likelihood = -2103.8382                     Prob > chi2       =     0.8588
------------------------------------------------------------------------------
       IMIPC |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0277202   .1191203     0.23   0.816    -.2057513    .2611917
          2  |  -.0382976   .1216934    -0.31   0.753    -.2768123    .2002172
             |
       _cons |  -1.988302   .3434079    -5.79   0.000    -2.661369   -1.315235
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .7402117   .4188413                      .2441811    2.243881
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7458774   .1363842                      .5212242    1.067358
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 295.03              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. margins Tx

Adjusted predictions                            Number of obs     =      4,173
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          0  |   .1715523   .0413514     4.15   0.000      .090505    .2525996
          1  |   .1748378   .0418245     4.18   0.000     .0928634    .2568123
          2  |   .1670851   .0406833     4.11   0.000     .0873473     .246823
------------------------------------------------------------------------------

. margins, dydx(Tx)

Conditional marginal effects                    Number of obs     =      4,173
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()
dy/dx w.r.t. : 2.Tx 3.Tx

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0032855   .0141263     0.23   0.816    -.0244015    .0309726
          2  |  -.0044672   .0142121    -0.31   0.753    -.0323224     .023388
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. 
. *Report ICC
. meglm IMIPC || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -2255.8741  
Iteration 1:   log likelihood =  -2251.865  
Iteration 2:   log likelihood = -2251.8612  
Iteration 3:   log likelihood = -2251.8612  

Refining starting values:

Grid node 0:   log likelihood = -2107.9919

Fitting full model:

Iteration 0:   log likelihood = -2107.9919  
Iteration 1:   log likelihood = -2106.2959  
Iteration 2:   log likelihood = -2105.1109  
Iteration 3:   log likelihood = -2104.2477  
Iteration 4:   log likelihood = -2103.9969  
Iteration 5:   log likelihood = -2103.9905  
Iteration 6:   log likelihood = -2103.9905  

Mixed-effects GLM                               Number of obs     =      4,173
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        168      596.1      1,270
          CowID |      1,110          1        3.8          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(0)      =          .
Log likelihood = -2103.9905                     Prob > chi2       =          .
------------------------------------------------------------------------------
       IMIPC |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |  -1.991534   .3364834    -5.92   0.000    -2.651029   -1.332038
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .7414414   .4195001                      .2446107    2.247388
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .7465621   .1363831                      .5218758    1.067984
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 295.74              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estat icc

Intraclass correlation

------------------------------------------------------------------------------
                       Level |        ICC   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
                      FARMID |   .1551824   .0740752       .057219    .3573024
                CowID|FARMID |   .3114365   .0645448      .2004738    .4493027
------------------------------------------------------------------------------

Outcome 3: New IMI

CrossTable(SDCTQTR$Tx,SDCTQTR$NewIMI,prop.c=FALSE,prop.t=FALSE,prop.chisq = FALSE)
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  3794 
## 
##  
##              | SDCTQTR$NewIMI 
##   SDCTQTR$Tx |         0 |         1 | Row Total | 
## -------------|-----------|-----------|-----------|
##            0 |      1009 |       246 |      1255 | 
##              |     0.804 |     0.196 |     0.331 | 
## -------------|-----------|-----------|-----------|
##            1 |      1026 |       272 |      1298 | 
##              |     0.790 |     0.210 |     0.342 | 
## -------------|-----------|-----------|-----------|
##            2 |       995 |       246 |      1241 | 
##              |     0.802 |     0.198 |     0.327 | 
## -------------|-----------|-----------|-----------|
## Column Total |      3030 |       764 |      3794 | 
## -------------|-----------|-----------|-----------|
## 
## 

Logistic regression model for new IMI

Model building plan

Model type: Logistic regression with mixed effects (generalized linear mixed model with binomial family / logit link).

Step 1: Identify potential confouders using a directed acyclic graph (DAG)

Step 2: Create model with all potential confounders

Step 3: Investigate potential effect measure modification

Step 4: Remove unneccesary covariates in backwards stepwise fashion using 10% rule (i.e. if odds ratio for algorithm or culture changes by >10% after removing the covariate, the covariate is retained in the model)

Step 5: Report final model

Step 1: DAG

This is used to identify variables that could be confounders if they are not balanced between treatment groups.

library(DiagrammeR)
mermaid("graph LR
        T(Treatment)-->U(New IMI)
        A(Age)-->T
        P(Parity)-->T
        M(Yield at dry-off)-->T
        S(SCC during prev lactation)-->T
        C(CM in prev lact)-->T
        D(DIM at dry off) --> T
        I(IMI at dry off) --> T
        K(DIM at post calving sample) --> T
        I-->U
        P-->I
        A-->I
        C-->I
        I-->S
        I-->M
        D-->S
        D-->M        
        D-->U
        K-->U
        A-->U
        P-->U
        M-->U
        S-->U
        C-->U
        C-->M
        P-->C
        P-->S
        P-->M
        A-->P
        A-->C
        A-->S
        A-->M
        M-->S
        C-->S
style D fill:#FFFFFF, stroke-width:0px
style K fill:#FFFFFF, stroke-width:0px
style A fill:#FFFFFF, stroke-width:0px
        style T fill:#FFFFFF, stroke-width:2px
        style P fill:#FFFFFF, stroke-width:0px
        style M fill:#FFFFFF, stroke-width:0px
        style S fill:#FFFFFF, stroke-width:0px
        style C fill:#FFFFFF, stroke-width:0px
        style I fill:#FFFFFF, stroke-width:0px
        style U fill:#FFFFFF, stroke-width:2px
        ")

According to this DAG, I may need to control for the following variables.

Parity [“Parity”] or Age [“Age”] <- will use Parity

Yield at most recent test before dry off [“DOMY”]

Somatic cell count at last herd test during previous lactation [“DOSCC” or “PrevSCCHi”] <- will use DOSCC

Clinical mastitis in previous lactation [“PrevCM”]

IMI at dry-off [“DOIMI”]

Days in milk at dry-off [“DODIM”]

Days in milk at post-calving sample [“PCSampDIM”]





Steps 2 to 5 done in STATA (log below)

. *Outcome 3: New IMI
. *Step 2: Full model with possible covariates
. meglm NewIMI i.Tx Parity DOMY DOSCC PrevCM IMIDO DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial) link
> (logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1861.6904  
Iteration 1:   log likelihood = -1858.6785  
Iteration 2:   log likelihood = -1858.6761  
Iteration 3:   log likelihood = -1858.6761  

Refining starting values:

Grid node 0:   log likelihood = -1792.7867

Fitting full model:

Iteration 0:   log likelihood = -1792.7867  (not concave)
Iteration 1:   log likelihood = -1788.5687  
Iteration 2:   log likelihood = -1786.8649  
Iteration 3:   log likelihood = -1781.6151  
Iteration 4:   log likelihood = -1780.2114  
Iteration 5:   log likelihood = -1780.1959  
Iteration 6:   log likelihood = -1780.1959  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(9)      =      22.75
Log likelihood = -1780.1959                     Prob > chi2       =     0.0068
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.067021   .1320534     0.52   0.600     .8371998    1.359931
          2  |   1.012385   .1274815     0.10   0.922      .790971    1.295778
             |
      Parity |   1.146605   .0749428     2.09   0.036     1.008739    1.303313
        DOMY |     1.0017   .0072205     0.24   0.814     .9876471    1.015952
       DOSCC |   1.056289   .0518521     1.12   0.265     .9593963    1.162966
      PrevCM |    1.13313   .1644456     0.86   0.389      .852607    1.505949
       IMIDO |     .75524   .0825663    -2.57   0.010     .6095758     .935712
       DODIM |   1.001827   .0011273     1.62   0.105     .9996199    1.004039
   PCSampDIM |   1.047238   .0237995     2.03   0.042     1.001616    1.094939
       _cons |   .0275763   .0172592    -5.74   0.000     .0080871    .0940326
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5800246   .3402997                      .1836739    1.831662
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5678001   .1358789                      .3552192    .9075998
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 156.96              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. 
. *Step 3: Check for effect measure modification
. *I will investigate: Tx:FARM Tx:Parity Tx:IMIDO
. 
. *Tx:FARMD
. meglm NewIMI i.Tx##i.FARMID Parity DOMY DOSCC PrevCM IMIDO DODIM PCSampDIM || CowID:, or family(binomial) link
> (logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1788.6826  
Iteration 1:   log likelihood = -1771.7626  
Iteration 2:   log likelihood = -1770.9436  
Iteration 3:   log likelihood =   -1770.93  
Iteration 4:   log likelihood =   -1770.93  

Refining starting values:

Grid node 0:   log likelihood =  -1773.557

Fitting full model:

Iteration 0:   log likelihood =  -1773.557  
Iteration 1:   log likelihood = -1761.6884  
Iteration 2:   log likelihood = -1759.0793  
Iteration 3:   log likelihood = -1759.0549  
Iteration 4:   log likelihood = -1759.0549  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit
Group variable:           CowID                 Number of groups  =      1,020

                                                Obs per group:
                                                              min =          1
                                                              avg =        3.7
                                                              max =         14

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(27)     =     167.25
Log likelihood = -1759.0549                     Prob > chi2       =     0.0000
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.835406   1.120958     0.99   0.320      .554457    6.075698
          2  |   .6735357    .515268    -0.52   0.605     .1503747      3.0168
             |
      FARMID |
          2  |   .3485607   .3005266    -1.22   0.222     .0643248    1.888767
          3  |   4.563922   2.391028     2.90   0.004     1.634541    12.74327
          4  |   9.977812   4.832916     4.75   0.000     3.861375    25.78272
          5  |   4.310915   2.129946     2.96   0.003     1.636839    11.35358
          6  |   2.301965   1.603881     1.20   0.231      .587528    9.019215
          7  |   1.920534    1.07953     1.16   0.246     .6382088    5.779383
             |
   Tx#FARMID |
        1#2  |   1.704183   1.832247     0.50   0.620     .2071808     14.0179
        1#3  |    .444524    .304844    -1.18   0.237     .1159208    1.704625
        1#4  |   .4113516   .2627111    -1.39   0.164     .1176496    1.438255
        1#5  |   .9443073   .6175043    -0.09   0.930     .2621157    3.401995
        1#6  |   .5510212   .5178955    -0.63   0.526     .0873249    3.476948
        1#7  |     .63422   .4931283    -0.59   0.558     .1381659    2.911247
        2#2  |   4.211812   4.843033     1.25   0.211     .4422811    40.10878
        2#3  |   1.742258   1.437172     0.67   0.501     .3459111    8.775271
        2#4  |   1.087214   .8563911     0.11   0.915     .2321823    5.090973
        2#5  |   1.969769   1.581921     0.84   0.399     .4081464    9.506372
        2#6  |   1.102605   1.200846     0.09   0.929     .1304301    9.320996
        2#7  |    2.15501   1.913196     0.86   0.387     .3782348    12.27827
             |
      Parity |   1.159285   .0748337     2.29   0.022     1.021513    1.315639
        DOMY |   1.001043   .0071295     0.15   0.884     .9871663    1.015114
       DOSCC |   1.053274   .0507829     1.08   0.282     .9582992    1.157661
      PrevCM |   1.096585   .1565668     0.65   0.518     .8289157    1.450688
       IMIDO |    .746838   .0811995    -2.68   0.007     .6035038    .9242146
       DODIM |   1.001846   .0011129     1.66   0.097     .9996671    1.004029
   PCSampDIM |   1.041161   .0231728     1.81   0.070     .9967194    1.087584
       _cons |   .0113961   .0079917    -6.38   0.000      .002883     .045048
-------------+----------------------------------------------------------------
CowID        |
   var(_cons)|   .4948639   .1294907                      .2963142    .8264548
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 23.75       Prob >= chibar2 = 0.0000

. testparm Tx#FARMID

 ( 1)  [NewIMI]2.Tx#2.FARMID = 0
 ( 2)  [NewIMI]2.Tx#3.FARMID = 0
 ( 3)  [NewIMI]2.Tx#4.FARMID = 0
 ( 4)  [NewIMI]2.Tx#5.FARMID = 0
 ( 5)  [NewIMI]2.Tx#6.FARMID = 0
 ( 6)  [NewIMI]2.Tx#7.FARMID = 0
 ( 7)  [NewIMI]3.Tx#2.FARMID = 0
 ( 8)  [NewIMI]3.Tx#3.FARMID = 0
 ( 9)  [NewIMI]3.Tx#4.FARMID = 0
 (10)  [NewIMI]3.Tx#5.FARMID = 0
 (11)  [NewIMI]3.Tx#6.FARMID = 0
 (12)  [NewIMI]3.Tx#7.FARMID = 0

           chi2( 12) =   14.89
         Prob > chi2 =    0.2475

. 
. *Tx:Parity
. meglm NewIMI i.Tx##Parity DOMY DOSCC PrevCM IMIDO DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial) lin
> k(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1852.9035  
Iteration 1:   log likelihood =  -1849.617  
Iteration 2:   log likelihood = -1849.6146  
Iteration 3:   log likelihood = -1849.6146  

Refining starting values:

Grid node 0:   log likelihood = -1787.0653

Fitting full model:

Iteration 0:   log likelihood = -1787.0653  (not concave)
Iteration 1:   log likelihood = -1782.8271  
Iteration 2:   log likelihood = -1781.6471  
Iteration 3:   log likelihood = -1774.3269  
Iteration 4:   log likelihood = -1773.3731  
Iteration 5:   log likelihood = -1773.3599  
Iteration 6:   log likelihood = -1773.3598  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(14)     =      36.60
Log likelihood = -1773.3598                     Prob > chi2       =     0.0008
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .9976673   .1867289    -0.01   0.990     .6913057    1.439797
          2  |   .9143309   .1786533    -0.46   0.647     .6234263    1.340978
             |
      Parity |
          2  |   1.334815   .2782983     1.39   0.166     .8870581    2.008583
          3  |   .8965647   .2056382    -0.48   0.634     .5719368     1.40545
             |
   Tx#Parity |
        1#2  |    .953522   .2762496    -0.16   0.870     .5404118    1.682428
        1#3  |   1.409618   .4292396     1.13   0.260     .7760754    2.560347
        2#2  |   .6961658   .2065276    -1.22   0.222     .3892167    1.245185
        2#3  |   2.247515   .7002916     2.60   0.009     1.220341    4.139273
             |
        DOMY |   1.001291   .0071464     0.18   0.857     .9873821    1.015396
       DOSCC |   1.050112   .0514067     1.00   0.318     .9540389    1.155859
      PrevCM |   1.121525   .1614148     0.80   0.426      .845863    1.487022
       IMIDO |   .7609235   .0829293    -2.51   0.012      .614572    .9421265
       DODIM |   1.001637   .0011201     1.46   0.143     .9994445    1.003835
   PCSampDIM |   1.049288   .0236552     2.13   0.033     1.003934    1.096691
       _cons |   .0371982   .0230868    -5.30   0.000     .0110212     .125549
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5619739   .3297342                      .1779425    1.774813
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5203301    .132726                      .3156124    .8578349
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 152.51              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. testparm Tx#Parity

 ( 1)  [NewIMI]2.Tx#2.Parity = 0
 ( 2)  [NewIMI]2.Tx#3.Parity = 0
 ( 3)  [NewIMI]3.Tx#2.Parity = 0
 ( 4)  [NewIMI]3.Tx#3.Parity = 0

           chi2(  4) =   13.64
         Prob > chi2 =    0.0086

. 
. *P<0.05. Will investigate further.
. margins Tx#Parity

Predictive margins                              Number of obs     =      3,778
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   Tx#Parity |
        0#1  |   .1401822   .0349876     4.01   0.000     .0716077    .2087567
        0#2  |   .1732482   .0408119     4.25   0.000     .0932583     .253238
        0#3  |   .1290123    .034408     3.75   0.000     .0615738    .1964507
        1#1  |   .1399357   .0341671     4.10   0.000     .0729694    .2069021
        1#2  |   .1671599   .0407446     4.10   0.000      .087302    .2470179
        1#3  |    .166311   .0407065     4.09   0.000     .0865278    .2460942
        2#1  |    .130967    .033026     3.97   0.000     .0662373    .1956968
        2#2  |   .1237738    .032809     3.77   0.000     .0594694    .1880782
        2#3  |   .2163237   .0485528     4.46   0.000      .121162    .3114853
------------------------------------------------------------------------------

. 
. *Similar pattern to last model, with 3rd and greater parity cows in the algorithm group being much higher than
>  other gropus (21% new IMI risk, compared 13% in other parities in algorithm group).  Again, it seems to be an
>  unnecessary complication to report stratified models in this situation, given that the 95% CI for the new IMI
>  risk in that group is very wide (12-31%). 
. 
. *Tx:IMIDO
. meglm NewIMI i.Tx##i.IMIDO i.Parity DOMY DOSCC PrevCM DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial)
>  link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1860.8614  
Iteration 1:   log likelihood = -1857.7827  
Iteration 2:   log likelihood = -1857.7802  
Iteration 3:   log likelihood = -1857.7802  

Refining starting values:

Grid node 0:   log likelihood =  -1792.378

Fitting full model:

Iteration 0:   log likelihood =  -1792.378  (not concave)
Iteration 1:   log likelihood = -1788.1618  
Iteration 2:   log likelihood = -1786.4059  
Iteration 3:   log likelihood = -1781.1496  
Iteration 4:   log likelihood = -1779.6714  
Iteration 5:   log likelihood = -1779.6553  
Iteration 6:   log likelihood = -1779.6553  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(12)     =      23.76
Log likelihood = -1779.6553                     Prob > chi2       =     0.0219
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.112747   .1559613     0.76   0.446     .8454601    1.464536
          2  |   1.082339   .1534713     0.56   0.577     .8197217    1.429092
             |
     1.IMIDO |   .8691404   .1613305    -0.76   0.450     .6040728     1.25052
             |
    Tx#IMIDO |
        1#1  |   .8537209   .2189073    -0.62   0.537     .5164813    1.411163
        2#1  |   .7644974   .2026174    -1.01   0.311     .4547567    1.285206
             |
      Parity |
          2  |   1.170315   .1452765     1.27   0.205     .9175702    1.492679
          3  |   1.310411    .172048     2.06   0.039     1.013096     1.69498
             |
        DOMY |    1.00169   .0072078     0.23   0.814     .9876626    1.015917
       DOSCC |    1.05675   .0519908     1.12   0.262     .9596091    1.163725
      PrevCM |   1.126278   .1634314     0.82   0.412     .8474808    1.496792
       DODIM |   1.001846   .0011265     1.64   0.101     .9996407    1.004057
   PCSampDIM |   1.047205    .023781     2.03   0.042     1.001617    1.094868
       _cons |   .0303745   .0189153    -5.61   0.000     .0089626    .1029394
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5776476    .338999                       .182863    1.824737
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5627969   .1355316                      .3510485    .9022697
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 156.25              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. testparm Tx#IMIDO

 ( 1)  [NewIMI]2.Tx#1.IMIDO = 0
 ( 2)  [NewIMI]3.Tx#1.IMIDO = 0

           chi2(  2) =    1.04
         Prob > chi2 =    0.5934

. 
. *Step 4: remove unnecessary covariates using 10% rule. I will remove in the following order: DODIM DOMY Parity
>  DOSCC PCSampDIM PrevCM IMIDO
. 
. *Step 4a: Full model
. meglm NewIMI i.Tx i.IMIDO i.Parity DOMY DOSCC PrevCM DODIM PCSampDIM|| FARMID: || CowID:, or family(binomial) 
> link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1861.6725  
Iteration 1:   log likelihood = -1858.6621  
Iteration 2:   log likelihood = -1858.6597  
Iteration 3:   log likelihood = -1858.6597  

Refining starting values:

Grid node 0:   log likelihood = -1792.8234

Fitting full model:

Iteration 0:   log likelihood = -1792.8234  (not concave)
Iteration 1:   log likelihood = -1788.6041  
Iteration 2:   log likelihood = -1786.8988  
Iteration 3:   log likelihood =  -1781.626  
Iteration 4:   log likelihood = -1780.1935  
Iteration 5:   log likelihood = -1780.1767  
Iteration 6:   log likelihood = -1780.1766  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(10)     =      22.78
Log likelihood = -1780.1766                     Prob > chi2       =     0.0116
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |    1.06856   .1324597     0.53   0.593     .8380758    1.362432
          2  |   1.012813   .1275305     0.10   0.919      .791313    1.296313
             |
     1.IMIDO |   .7548885   .0825396    -2.57   0.010     .6092735    .9353052
             |
      Parity |
          2  |   1.170651   .1454678     1.27   0.205     .9176041    1.493481
          3  |   1.311418   .1723582     2.06   0.039     1.013605    1.696733
             |
        DOMY |   1.001685   .0072193     0.23   0.815     .9876347    1.015935
       DOSCC |   1.055508   .0519578     1.10   0.272      .958431    1.162418
      PrevCM |   1.133756   .1645199     0.87   0.387     .8531026    1.506738
       DODIM |   1.001825   .0011272     1.62   0.105      .999618    1.004037
   PCSampDIM |   1.047391   .0238081     2.04   0.042     1.001752    1.095109
       _cons |   .0315214   .0196066    -5.56   0.000     .0093143    .1066742
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5793346   .3398983                      .1834533    1.829504
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5670989   .1358741                      .3545807    .9069899
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 156.97              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. 
. *Step 4b: Removed DODIM
. meglm NewIMI i.Tx i.IMIDO i.Parity DOMY DOSCC PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(l
> ogit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1862.5797  
Iteration 1:   log likelihood = -1859.6375  
Iteration 2:   log likelihood = -1859.6352  
Iteration 3:   log likelihood = -1859.6352  

Refining starting values:

Grid node 0:   log likelihood = -1793.6987

Fitting full model:

Iteration 0:   log likelihood = -1793.6987  (not concave)
Iteration 1:   log likelihood = -1789.4788  
Iteration 2:   log likelihood = -1787.7998  
Iteration 3:   log likelihood = -1782.6825  
Iteration 4:   log likelihood = -1781.4844  
Iteration 5:   log likelihood =  -1781.475  
Iteration 6:   log likelihood =  -1781.475  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(9)      =      20.20
Log likelihood =  -1781.475                     Prob > chi2       =     0.0167
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.080621   .1341344     0.62   0.532      .847259    1.378258
          2  |   1.019324   .1285538     0.15   0.879     .7960886    1.305158
             |
     1.IMIDO |   .7542522    .082511    -2.58   0.010     .6086952    .9346162
             |
      Parity |
          2  |   1.169168   .1456174     1.25   0.210     .9159281    1.492424
          3  |   1.304125   .1717384     2.02   0.044     1.007455    1.688157
             |
        DOMY |   .9995802   .0071005    -0.06   0.953     .9857599    1.013594
       DOSCC |   1.056331   .0520548     1.11   0.266     .9590782    1.163447
      PrevCM |      1.159   .1679974     1.02   0.309     .8723715    1.539804
   PCSampDIM |   1.046796   .0238609     2.01   0.045     1.001059    1.094623
       _cons |   .0589433   .0283868    -5.88   0.000      .022935    .1514849
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5640013   .3314323                      .1782692    1.784366
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5768512   .1366667                      .3625755    .9177602
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 156.32              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DODIM stays out
. 
. *Step 4c: Removed DOMY
. meglm NewIMI i.Tx i.IMIDO i.Parity DOSCC PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood =  -1863.411  
Iteration 1:   log likelihood = -1860.5129  
Iteration 2:   log likelihood = -1860.5105  
Iteration 3:   log likelihood = -1860.5105  

Refining starting values:

Grid node 0:   log likelihood = -1793.4569

Fitting full model:

Iteration 0:   log likelihood = -1793.4569  (not concave)
Iteration 1:   log likelihood = -1789.2499  
Iteration 2:   log likelihood = -1788.2965  
Iteration 3:   log likelihood = -1784.6423  
Iteration 4:   log likelihood = -1781.6453  
Iteration 5:   log likelihood = -1781.4771  
Iteration 6:   log likelihood = -1781.4767  
Iteration 7:   log likelihood = -1781.4767  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(8)      =      20.19
Log likelihood = -1781.4767                     Prob > chi2       =     0.0096
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.080339   .1340172     0.62   0.533     .8471637    1.377693
          2  |   1.019161   .1285064     0.15   0.880     .7960021    1.304881
             |
     1.IMIDO |   .7540274   .0823994    -2.58   0.010     .6086514    .9341264
             |
      Parity |
          2  |   1.169183    .145624     1.25   0.210      .915933    1.492455
          3  |   1.304316   .1717385     2.02   0.044      1.00764     1.68834
             |
       DOSCC |    1.05743   .0486781     1.21   0.225     .9662004    1.157274
      PrevCM |   1.158337    .167532     1.02   0.309     .8724173    1.537961
   PCSampDIM |    1.04686   .0238379     2.01   0.044     1.001166     1.09464
       _cons |   .0580389   .0234705    -7.04   0.000     .0262725    .1282148
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5635068   .3310508                      .1781692    1.782239
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5769498   .1366686                       .362664      .91785
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 158.07              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOMY stays out
. 
. *Step 4d: Removed Parity
. meglm NewIMI i.Tx i.IMIDO DOSCC PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1864.4594  
Iteration 1:   log likelihood =  -1861.628  
Iteration 2:   log likelihood = -1861.6257  
Iteration 3:   log likelihood = -1861.6257  

Refining starting values:

Grid node 0:   log likelihood = -1794.7534

Fitting full model:

Iteration 0:   log likelihood = -1794.7534  (not concave)
Iteration 1:   log likelihood = -1790.5609  
Iteration 2:   log likelihood =  -1788.999  
Iteration 3:   log likelihood =  -1784.343  
Iteration 4:   log likelihood = -1783.5845  
Iteration 5:   log likelihood = -1783.5819  
Iteration 6:   log likelihood = -1783.5819  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(6)      =      16.02
Log likelihood = -1783.5819                     Prob > chi2       =     0.0137
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.070017   .1331255     0.54   0.586     .8384728    1.365502
          2  |   1.012496   .1282758     0.10   0.922     .7898645     1.29788
             |
     1.IMIDO |   .7537521   .0824516    -2.58   0.010      .608299    .9339852
       DOSCC |   1.085536   .0481186     1.85   0.064     .9952061    1.184065
      PrevCM |   1.203671   .1736717     1.28   0.199      .907177    1.597068
   PCSampDIM |    1.04518   .0239028     1.93   0.053     .9993656    1.093094
       _cons |   .0563869   .0227147    -7.14   0.000     .0256025     .124186
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5542098   .3263943                      .1747313    1.757833
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .5987475   .1381081                      .3809817    .9409863
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 156.09              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. Parity stays out
. 
. *Step 4e: Removed DOSCC
. meglm NewIMI i.Tx i.IMIDO PrevCM PCSampDIM|| FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood =  -1871.002  
Iteration 1:   log likelihood = -1868.4634  
Iteration 2:   log likelihood = -1868.4612  
Iteration 3:   log likelihood = -1868.4612  

Refining starting values:

Grid node 0:   log likelihood = -1795.8335

Fitting full model:

Iteration 0:   log likelihood = -1795.8335  (not concave)
Iteration 1:   log likelihood = -1791.6748  
Iteration 2:   log likelihood = -1790.2424  
Iteration 3:   log likelihood = -1785.9546  
Iteration 4:   log likelihood = -1785.3009  
Iteration 5:   log likelihood = -1785.2913  
Iteration 6:   log likelihood = -1785.2913  

Mixed-effects GLM                               Number of obs     =      3,778
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      539.7      1,242
          CowID |      1,073          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(5)      =      12.64
Log likelihood = -1785.2913                     Prob > chi2       =     0.0270
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.058321   .1318892     0.45   0.649     .8289713    1.351123
          2  |    1.00742   .1279801     0.06   0.954     .7853733    1.292246
             |
     1.IMIDO |   .7634746   .0834353    -2.47   0.014     .6162716    .9458386
      PrevCM |   1.261812   .1797879     1.63   0.103     .9543599    1.668312
   PCSampDIM |    1.04567   .0239614     1.95   0.051     .9997456    1.093704
       _cons |   .0762428   .0281896    -6.96   0.000     .0369385    .1573684
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .5704959   .3346868                      .1806705    1.801432
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6115098   .1391301                      .3915064    .9551419
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 166.34              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. DOSCC stays out
. 
. *Step 4f: Removed PCSampDIM
. meglm NewIMI i.Tx i.IMIDO PrevCM || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1903.2371  
Iteration 1:   log likelihood = -1901.5457  
Iteration 2:   log likelihood = -1901.5446  
Iteration 3:   log likelihood = -1901.5446  

Refining starting values:

Grid node 0:   log likelihood = -1797.1515

Fitting full model:

Iteration 0:   log likelihood = -1797.1515  
Iteration 1:   log likelihood =  -1795.411  
Iteration 2:   log likelihood = -1791.7292  
Iteration 3:   log likelihood =  -1789.064  
Iteration 4:   log likelihood = -1788.8922  
Iteration 5:   log likelihood =  -1788.891  
Iteration 6:   log likelihood =  -1788.891  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(4)      =       8.94
Log likelihood =  -1788.891                     Prob > chi2       =     0.0626
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.048441   .1304032     0.38   0.704     .8216235    1.337873
          2  |   1.006695   .1277623     0.05   0.958     .7850001       1.291
             |
     1.IMIDO |   .7582053   .0828033    -2.53   0.011      .612107    .9391744
      PrevCM |   1.266543   .1804773     1.66   0.097     .9579149    1.674606
       _cons |   .0938639   .0352136    -6.31   0.000     .0449951    .1958085
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|    .699638   .3995406                       .228444    2.142728
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6124416   .1393736                      .3920635    .9566938
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 225.31              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PCSampDIM stays out
. 
. *Step 4g: Removed PrevCM
. meglm NewIMI i.Tx i.IMIDO || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1906.9318  
Iteration 1:   log likelihood = -1905.2447  
Iteration 2:   log likelihood = -1905.2437  
Iteration 3:   log likelihood = -1905.2437  

Refining starting values:

Grid node 0:   log likelihood = -1798.4938

Fitting full model:

Iteration 0:   log likelihood = -1798.4938  
Iteration 1:   log likelihood = -1795.2981  
Iteration 2:   log likelihood = -1791.1013  
Iteration 3:   log likelihood = -1790.2708  
Iteration 4:   log likelihood = -1790.2522  
Iteration 5:   log likelihood = -1790.2521  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(3)      =       6.24
Log likelihood = -1790.2521                     Prob > chi2       =     0.1005
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |    1.04531   .1300553     0.36   0.722      .819106    1.333981
          2  |   1.000218   .1269186     0.00   0.999     .7799827    1.282639
             |
     1.IMIDO |   .7642851   .0833703    -2.46   0.014     .6171689    .9464698
       _cons |   .1223913   .0416856    -6.17   0.000     .0627823    .2385965
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .7132042   .4068127                      .2331779    2.181426
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6156926   .1396327                      .3947483    .9603016
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 229.98              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. *Changed by <10%. PrevCM stays out
. 
. *Step 4h: Removed IMIDO
. meglm NewIMI i.Tx || FARMID: || CowID:, or family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1906.9818  
Iteration 1:   log likelihood = -1905.2958  
Iteration 2:   log likelihood = -1905.2949  
Iteration 3:   log likelihood = -1905.2949  

Refining starting values:

Grid node 0:   log likelihood = -1799.1424

Fitting full model:

Iteration 0:   log likelihood = -1799.1424  
Iteration 1:   log likelihood = -1797.7365  
Iteration 2:   log likelihood =  -1795.025  
Iteration 3:   log likelihood = -1793.5051  
Iteration 4:   log likelihood = -1793.3548  
Iteration 5:   log likelihood = -1793.3536  
Iteration 6:   log likelihood = -1793.3536  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.17
Log likelihood = -1793.3536                     Prob > chi2       =     0.9182
------------------------------------------------------------------------------
      NewIMI | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   1.046956   .1298974     0.37   0.712     .8209531    1.335175
          2  |   1.003857   .1270208     0.03   0.976     .7833705    1.286403
             |
       _cons |   .1159121   .0385802    -6.47   0.000     .0603692    .2225576
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6794512   .3882979                      .2216701    2.082617
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6082918   .1386766                      .3890966    .9509692
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 223.88              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Final model: NewIMI

. *Step 5: Report final model
. meglm NewIMI i.Tx || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1906.9818  
Iteration 1:   log likelihood = -1905.2958  
Iteration 2:   log likelihood = -1905.2949  
Iteration 3:   log likelihood = -1905.2949  

Refining starting values:

Grid node 0:   log likelihood = -1799.1424

Fitting full model:

Iteration 0:   log likelihood = -1799.1424  
Iteration 1:   log likelihood = -1797.7365  
Iteration 2:   log likelihood =  -1795.025  
Iteration 3:   log likelihood = -1793.5051  
Iteration 4:   log likelihood = -1793.3548  
Iteration 5:   log likelihood = -1793.3536  
Iteration 6:   log likelihood = -1793.3536  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(2)      =       0.17
Log likelihood = -1793.3536                     Prob > chi2       =     0.9182
------------------------------------------------------------------------------
      NewIMI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0458864   .1240715     0.37   0.712    -.1972893    .2890622
          2  |   .0038501   .1265327     0.03   0.976    -.2441495    .2518496
             |
       _cons |  -2.154923   .3328397    -6.47   0.000    -2.807277   -1.502569
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6794512   .3882979                      .2216701    2.082617
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|   .6082918   .1386766                      .3890966    .9509692
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 223.88              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. margins Tx

Adjusted predictions                            Number of obs     =      3,794
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          0  |    .147021   .0366388     4.01   0.000     .0752102    .2188317
          1  |   .1520168   .0374303     4.06   0.000     .0786548    .2253789
          2  |   .1474354   .0367238     4.01   0.000      .075458    .2194128
------------------------------------------------------------------------------

. margins, dydx(Tx)

Conditional marginal effects                    Number of obs     =      3,794
Model VCE    : OIM

Expression   : Marginal predicted mean, predict()
dy/dx w.r.t. : 2.Tx 3.Tx

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          Tx |
          1  |   .0049959   .0135311     0.37   0.712    -.0215246    .0315164
          2  |   .0004144   .0136197     0.03   0.976    -.0262798    .0271086
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. 
. *Report ICC
. meglm NewIMI || FARMID: || CowID:, family(binomial) link(logit)

Fitting fixed-effects model:

Iteration 0:   log likelihood = -1907.3926  
Iteration 1:   log likelihood = -1905.7142  
Iteration 2:   log likelihood = -1905.7133  
Iteration 3:   log likelihood = -1905.7133  

Refining starting values:

Grid node 0:   log likelihood = -1799.2054

Fitting full model:

Iteration 0:   log likelihood = -1799.2054  
Iteration 1:   log likelihood = -1797.8075  
Iteration 2:   log likelihood = -1795.1011  
Iteration 3:   log likelihood = -1793.5905  
Iteration 4:   log likelihood = -1793.4401  
Iteration 5:   log likelihood = -1793.4389  
Iteration 6:   log likelihood = -1793.4389  

Mixed-effects GLM                               Number of obs     =      3,794
Family:                binomial
Link:                     logit

-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
         FARMID |          7        156      542.0      1,242
          CowID |      1,078          1        3.5          4
-------------------------------------------------------------

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(0)      =          .
Log likelihood = -1793.4389                     Prob > chi2       =          .
------------------------------------------------------------------------------
      NewIMI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |  -2.138052   .3248702    -6.58   0.000    -2.774785   -1.501318
-------------+----------------------------------------------------------------
FARMID       |
   var(_cons)|   .6805675   .3888771                      .2220719    2.085686
-------------+----------------------------------------------------------------
FARMID>CowID |
   var(_cons)|    .607988   .1386545                      .3888432    .9506386
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 224.55              Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estat icc

Intraclass correlation

------------------------------------------------------------------------------
                       Level |        ICC   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
                      FARMID |   .1486467   .0722295      .0539665    .3482828
                CowID|FARMID |   .2814409   .0657981      .1715021    .4256474
------------------------------------------------------------------------------